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4.7 LINEAR TRANSFORMATIONS

The connection between linear functions and matrices is at the heart of our sub-
ject. As explained on p. 93, matrix algebra grew out of Cayley’s observation that
the composition of two linear functions can be represented by the multiplication
of two matrices. It’s now time to look deeper into such matters and to formalize
the connections between matrices, vector spaces, and linear functions defined on
vector spaces. This is the point at which linear algebra, as the study of linear
functions on vector spaces, begins in earnest.

Linear Transformations
Let U and V be vector spaces over a field F (ℜ or C for us).
• A linear transformation from U into V is defined to be a linear

function T mapping U into V. That is,

T(x + y) = T(x) + T(y) and T(αx) = αT(x) (4.7.1)
or, equivalently,

T(αx + y) = αT(x) + T(y) for all x,y ∈ U , α ∈ F . (4.7.2)

• A linear operator on U is defined to be a linear transformation
from U into itself—i.e., a linear function mapping U back into U .

Example 4.7.1
• The function 0(x) = 0 that maps all vectors in a space U to the zero

vector in another space V is a linear transformation from U into V, and,
not surprisingly, it is called the zero transformation.

• The function I(x) = x that maps every vector from a space U back to itself
is a linear operator on U . I is called the identity operator on U .

• For A ∈ ℜm×n and x ∈ ℜn×1, the function T(x) = Ax is a linear
transformation from ℜn into ℜm because matrix multiplication satisfies
A(αx + y) = αAx + Ay. T is a linear operator on ℜn if A is n × n.

• If W is the vector space of all functions from ℜ to ℜ, and if V is the space
of all differentiable functions from ℜ to ℜ, then the mapping D(f) = df/dx
is a linear transformation from V into W because

d(αf + g)
dx

= α
df

dx
+

dg

dx
.

• If V is the space of all continuous functions from ℜ into ℜ, then the
mapping defined by T(f) =

∫ x
0 f(t)dt is a linear operator on V because

∫ x

0
[αf(t) + g(t)]dt = α

∫ x

0
f(t)dt +

∫ x

0
g(t)dt.
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• The rotator Q that rotates vectors u in ℜ2 counterclockwise through an
angle θ, as shown in Figure 4.7.1, is a linear operator on ℜ2 because the
“action” of Q on u can be described by matrix multiplication in the sense
that the coordinates of the rotated vector Q(u) are given by

Q(u) =
(

x cos θ − y sin θ
x sin θ + y cos θ

)

=
(

cos θ − sin θ
sin θ cos θ

) (

x
y

)

.

• The projector P that maps each point v = (x, y, z) ∈ ℜ3 to its orthogonal
projection (x, y, 0) in the xy -plane, as depicted in Figure 4.7.2, is a linear
operator on ℜ3 because if u = (u 1, u 2, u 3) and v = (v1, v2, v3), then

P(αu + v)=(αu 1+v1, αu 2+v2, 0)=α(u 1, u 2, 0)+(v1, v2, 0)=αP(u)+P(v).

• The reflector R that maps each vector v = (x, y, z) ∈ ℜ3 to its reflection
R(v) = (x, y,−z) about the xy -plane, as shown in Figure 4.7.3, is a linear
operator on ℜ3.

θ

Q (u) = (x cos θ  -  y sin θ,  x sin θ  +  y cos θ)

u = (x, y)

y =
 x

P(v)

v v = (x, y, z)

R(v) = (x, y, -z)

Figure 4.7.1 Figure 4.7.2 Figure 4.7.3

• Just as the rotator Q is represented by a matrix [Q] =
(

cos θ − sin θ
sin θ cos θ

)

, the
projector P and the reflector R can be represented by matrices

[P] =

⎛

⎝

1 0 0
0 1 0
0 0 0

⎞

⎠ and [R] =

⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠

in the sense that the “action” of P and R on v = (x, y, z) can be accom-
plished with matrix multiplication using [P] and [R] by writing

⎛

⎝

1 0 0
0 1 0
0 0 0

⎞

⎠

⎛

⎝

x
y
z

⎞

⎠ =

⎛

⎝

x
y
0

⎞

⎠ and

⎛

⎝

1 0 0
0 1 0
0 0 −1

⎞

⎠

⎛

⎝

x
y
z

⎞

⎠ =

⎛

⎝

x
y

−z

⎞

⎠ .
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It would be wrong to infer from Example 4.7.1 that all linear transformations
can be represented by matrices (of finite size). For example, the differential and
integral operators do not have matrix representations because they are defined
on infinite-dimensional spaces. But linear transformations on finite-dimensional
spaces will always have matrix representations. To see why, the concept of “co-
ordinates” in higher dimensions must first be understood.

Recall that if B = {u1,u2, . . . ,un} is a basis for a vector space U , then
each v ∈ U can be written as v = α1u1 + α2u2 + · · ·+ αnun. The αi ’s in this
expansion are uniquely determined by v because if v =

∑

i αiui =
∑

i βiui,
then 0 =

∑

i(αi − βi)ui, and this implies αi − βi = 0 (i.e., αi = βi) for each
i because B is an independent set.

Coordinates of a Vector
Let B = {u1,u2, . . . ,un} be a basis for a vector space U , and let v ∈ U .
The coefficients αi in the expansion v = α1u1 +α2u2 + · · ·+αnun are
called the coordinates of v with respect to B, and, from now on,
[v]B will denote the column vector

[v]B =

⎛

⎜

⎜

⎝

α1

α2
...

αn

⎞

⎟

⎟

⎠

.

Caution! Order is important. If B′ is a permutation of B, then [v]B′

is the corresponding permutation of [v]B.

From now on, S = {e1, e2, . . . , en} will denote the standard basis of unit
vectors (in natural order) for ℜn (or Cn). If no other basis is explicitly men-
tioned, then the standard basis is assumed. For example, if no basis is mentioned,
and if we write

v =

⎛

⎝

8
7
4

⎞

⎠ ,

then it is understood that this is the representation with respect to S in the
sense that v = [v]S = 8e1 + 7e2 + 4e3. The standard coordinates of a vector
are its coordinates with respect to S. So, 8, 7, and 4 are the standard coordinates
of v in the above example.

Example 4.7.2
Problem: If v is a vector in ℜ3 whose standard coordinates are
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v =

⎛

⎝

8
7
4

⎞

⎠ ,

determine the coordinates of v with respect to the basis

B =

⎧

⎨

⎩

u1 =

⎛

⎝

1
1
1

⎞

⎠ ,u2 =

⎛

⎝

1
2
2

⎞

⎠ ,u3 =

⎛

⎝

1
2
3

⎞

⎠

⎫

⎬

⎭

.

Solution: The object is to find the three unknowns α1, α2, and α3 such that
α1u1 + α2u2 + α3u3 = v. This is simply a 3 × 3 system of linear equations

⎛

⎝

1 1 1
1 2 2
1 2 3

⎞

⎠

⎛

⎝

α1

α2

α3

⎞

⎠ =

⎛

⎝

8
7
4

⎞

⎠ =⇒ [v]B =

⎛

⎝

α1

α2

α3

⎞

⎠ =

⎛

⎝

9
2

−3

⎞

⎠ .

The general rule for making a change of coordinates is given on p. 252.

Linear transformations possess coordinates in the same way vectors do be-
cause linear transformations from U to V also form a vector space.

Space of Linear Transformations
• For each pair of vector spaces U and V over F , the set L(U ,V) of

all linear transformations from U to V is a vector space over F .

• Let B = {u1,u2, . . . ,un} and B′ = {v1,v2, . . . ,vm} be bases for U
and V, respectively, and let Bji be the linear transformation from
U into V defined by Bji(u) = ξjvi, where (ξ1, ξ2, . . . , ξn)T = [u]B.
That is, pick off the jth coordinate of u, and attach it to vi.

◃ BL = {Bji}i=1...m
j=1...n is a basis for L(U ,V).

◃ dimL(U ,V) = (dimU) (dimV) .

Proof. L(U ,V) is a vector space because the defining properties on p. 160 are
satisfied—details are omitted. Prove BL is a basis by demonstrating that it is a
linearly independent spanning set for L(U ,V). To establish linear independence,
suppose

∑

j,i ηjiBji = 0 for scalars ηji, and observe that for each uk ∈ B,

Bji(uk)=
{

vi if j = k
0 if j ̸= k

=⇒ 0=
(

∑

j,i

ηjiBji

)

(uk)=
∑

j,i

ηjiBji(uk)=
m
∑

i=1

ηkivi.

For each k, the independence of B′ implies that ηki = 0 for each i, and thus
BL is linearly independent. To see that BL spans L(U ,V), let T ∈ L(U ,V),
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and determine the action of T on any u ∈ U by using u =
∑n

j=1 ξjuj and
T(uj) =

∑m
i=1 αijvi to write

T(u) = T

(

n
∑

j=1

ξjuj

)

=
n
∑

j=1

ξjT(uj) =
n
∑

j=1

ξj

m
∑

i=1

αijvi

=
∑

i,j

αijξjvi =
∑

i,j

αijBji(u).
(4.7.3)

This holds for all u ∈ U , so T =
∑

i,j αijBji, and thus BL spans L(U ,V).

It now makes sense to talk about the coordinates of T ∈ L(U ,V) with
respect to the basis BL. In fact, the rule for determining these coordinates is
contained in the proof above, where it was demonstrated that T =

∑

i,j αijBji

in which the coordinates αij are precisely the scalars in

T(uj) =
m
∑

i=1

αijvi or, equivalently, [T(uj)]B′ =

⎛

⎜

⎜

⎝

α1j

α2j

...
αmj

⎞

⎟

⎟

⎠

, j = 1, 2, . . . , n.

This suggests that rather than listing all coordinates αij in a single column
containing mn entries (as we did with coordinate vectors), it’s more logical to
arrange the αij ’s as an m × n matrix in which the jth column contains the
coordinates of T(uj) with respect to B′. These ideas are summarized below.

Coordinate Matrix Representations
Let B = {u1,u2, . . . ,un} and B′ = {v1,v2, . . . ,vm} be bases for U
and V, respectively. The coordinate matrix of T ∈ L(U ,V) with
respect to the pair (B,B′) is defined to be the m × n matrix

[T]BB′ =
(

[T(u1)]B′

∣

∣

∣
[T(u2)]B′

∣

∣

∣
· · ·

∣

∣

∣
[T(un)]B′

)

. (4.7.4)

In other words, if T(uj) = α1jv1 + α2jv2 + · · · + αmjvm, then

[T(uj)]B′ =

⎛

⎜

⎜

⎝

α1j

α2j

...
αmj

⎞

⎟

⎟

⎠

and [T]BB′ =

⎛

⎜

⎜

⎝

α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn

⎞

⎟

⎟

⎠

. (4.7.5)

When T is a linear operator on U , and when there is only one basis
involved, [T]B is used in place of [T]BB to denote the (necessarily
square) coordinate matrix of T with respect to B.
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Example 4.7.3
Problem: If P is the projector defined in Example 4.7.1 that maps each point
v = (x, y, z) ∈ ℜ3 to its orthogonal projection P(v) = (x, y, 0) in the xy -plane,
determine the coordinate matrix [P]B with respect to the basis

B =

⎧

⎨

⎩

u1 =

⎛

⎝

1
1
1

⎞

⎠ ,u2 =

⎛

⎝

1
2
2

⎞

⎠ ,u3 =

⎛

⎝

1
2
3

⎞

⎠

⎫

⎬

⎭

.

Solution: According to (4.7.4), the jth column in [P]B is [P(uj)]B. Therefore,

P(u1) =

⎛

⎝

1
1
0

⎞

⎠ = 1u1 + 1u2 − 1u3 =⇒ [P(u1)]B =

⎛

⎝

1
1

−1

⎞

⎠ ,

P(u2) =

⎛

⎝

1
2
0

⎞

⎠ = 0u1 + 3u2 − 2u3 =⇒ [P(u2)]B =

⎛

⎝

0
3

−2

⎞

⎠ ,

P(u3) =

⎛

⎝

1
2
0

⎞

⎠ = 0u1 + 3u2 − 2u3 =⇒ [P(u3)]B =

⎛

⎝

0
3

−2

⎞

⎠ ,

so that [P]B =

⎛

⎝

1 0 0
1 3 3

−1 −2 −2

⎞

⎠ .

Example 4.7.4
Problem: Consider the same problem given in Example 4.7.3, but use different
bases—say,

B =

⎧

⎨

⎩

u1 =

⎛

⎝

1
0
0

⎞

⎠ , u2 =

⎛

⎝

1
1
0

⎞

⎠ , u3 =

⎛

⎝

1
1
1

⎞

⎠

⎫

⎬

⎭

and

B′ =

⎧

⎨

⎩

v1 =

⎛

⎝

−1
0
0

⎞

⎠ , v2 =

⎛

⎝

0
1
0

⎞

⎠ , v3 =

⎛

⎝

0
1

−1

⎞

⎠

⎫

⎬

⎭

.

For the projector defined by P(x, y, z) = (x, y, 0), determine [P]BB′ .

Solution: Determine the coordinates of each P(uj) with respect to B′, as
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shown below:

P(u1) =

⎛

⎝

1
0
0

⎞

⎠ = −1v1 + 0v2 + 0v3 =⇒ [P(u1)]B′ =

⎛

⎝

−1
0
0

⎞

⎠ ,

P(u2) =

⎛

⎝

1
1
0

⎞

⎠ = −1v1 + 1v2 + 0v3 =⇒ [P(u2)]B′ =

⎛

⎝

−1
1
0

⎞

⎠ ,

P(u3) =

⎛

⎝

1
1
0

⎞

⎠ = −1v1 + 1v2 + 0v3 =⇒ [P(u3)]B′ =

⎛

⎝

−1
1
0

⎞

⎠ .

Therefore, according to (4.7.4), [P]BB′ =
(−1 −1 −1

0 1 1
0 0 0

)

.

At the heart of linear algebra is the realization that the theory of finite-
dimensional linear transformations is essentially the same as the theory of ma-
trices. This is due primarily to the fundamental fact that the action of a linear
transformation T on a vector u is precisely matrix multiplication between the
coordinates of T and the coordinates of u.

Action as Matrix Multiplication
Let T ∈ L(U ,V), and let B and B′ be bases for U and V, respectively.
For each u ∈ U , the action of T on u is given by matrix multiplication
between their coordinates in the sense that

[T(u)]B′ = [T]BB′[u]B. (4.7.6)

Proof. Let B = {u1,u2, . . . ,un} and B′ = {v1,v2, . . . ,vm} . If u =
∑n

j=1 ξjuj

and T(uj) =
∑m

i=1 αijvi, then

[u]B =

⎛

⎜

⎜

⎝

ξ1

ξ2
...

ξn

⎞

⎟

⎟

⎠

and [T]BB′ =

⎛

⎜

⎜

⎝

α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn

⎞

⎟

⎟

⎠

,

so, according to (4.7.3),

T(u) =
∑

i,j

αijξjvi =
m
∑

i=1

(

n
∑

j=1

αijξj

)

vi.
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In other words, the coordinates of T(u) with respect to B′ are the terms
∑n

j=1 αijξj for i = 1, 2, . . . , m, and therefore

[T(u)]B′ =

⎛

⎜

⎜

⎜

⎝

∑

j α1jξj
∑

j α2jξj

...
∑

j αmjξj

⎞

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

α11 α12 · · · α1n

α21 α22 · · · α2n
...

...
. . .

...
αm1 αm2 · · · αmn

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

ξ1

ξ2
...

ξn

⎞

⎟

⎟

⎠

= [T]BB′[u]B.

Example 4.7.5
Problem: Show how the action of the operator D

(

p(t)
)

= dp/dt on the space
P3 of polynomials of degree three or less is given by matrix multiplication.

Solution: The coordinate matrix of D with respect to the basis B = {1, t, t2, t3}
is

[D]B =

⎛

⎜

⎝

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎞

⎟

⎠
.

If p = p(t) = α0 + α1t + α2t2 + α3t3, then D(p) = α1 + 2α2t + 3α3t2 so that

[p]B =

⎛

⎜

⎝

α0

α1

α2

α3

⎞

⎟

⎠
and [D(p)]B =

⎛

⎜

⎝

α1

2α2

3α3

0

⎞

⎟

⎠
.

The action of D is accomplished by means of matrix multiplication because

[D(p)]B =

⎛

⎜

⎝

α1

2α2

3α3

0

⎞

⎟

⎠
=

⎛

⎜

⎝

0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

⎞

⎟

⎠

⎛

⎜

⎝

α0

α1

α2

α3

⎞

⎟

⎠
= [D]B[p]B.

For T ∈ L(U ,V) and L ∈ L(V,W), the composition of L with T is
defined to be the function C : U → W such that C(x) = L

(

T(x)
)

, and this
composition, denoted by C = LT, is also a linear transformation because

C(αx + y) = L
(

T(αx + y)
)

= L
(

αT(x) + T(y)
)

= αL
(

T(x)
)

+ L
(

T(y)
)

= αC(x) + C(y).
Consequently, if B, B′, and B′′ are bases for U , V, and W, respectively,
then C must have a coordinate matrix representation with respect to (B,B′′),
so it’s only natural to ask how [C]BB′′ is related to [L]B′B′′ and [T]BB′ . Re-
call that the motivation behind the definition of matrix multiplication given on
p. 93 was based on the need to represent the composition of two linear trans-
formations, so it should be no surprise to discover that [C]BB′′ = [L]B′B′′[T]BB′ .
This, along with the other properties given below, makes it clear that studying
linear transformations on finite-dimensional spaces amounts to studying matrix
algebra.
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Connections with Matrix Algebra
• If T,L ∈ L(U ,V), and if B and B′ are bases for U and V, then

◃ [αT]BB′ = α[T]BB′ for scalars α, (4.7.7)

◃ [T + L]BB′ = [T]BB′ + [L]BB′ . (4.7.8)

• If T ∈ L(U ,V) and L ∈ L(V,W), and if B, B′, and B′′ are bases
for U , V, and W, respectively, then LT ∈ L(U ,W), and

◃ [LT]BB′′ = [L]B′B′′[T]BB′ . (4.7.9)

• If T ∈ L(U ,U) is invertible in the sense that TT−1 = T−1T = I
for some T−1 ∈ L(U ,U), then for every basis B of U ,

◃ [T−1]B = [T]−1
B . (4.7.10)

Proof. The first three properties (4.7.7)–(4.7.9) follow directly from (4.7.6). For
example, to prove (4.7.9), let u be any vector in U , and write

[LT]BB′′[u]B=
[

LT(u)
]

B′′ =
[

L
(

T(u)
)]

B′′ =[L]B′B′′
[

T(u)
]

B′ =[L]B′B′′[T]BB′[u]B.

This is true for all u ∈ U , so [LT]BB′′ = [L]B′B′′[T]BB′ (see Exercise 3.5.5).
Proving (4.7.7) and (4.7.8) is similar—details are omitted. To prove (4.7.10),
note that if dimU = n, then [I]B = In for all bases B, so property (4.7.9)
implies In = [I]B = [TT−1]B = [T]B[T−1]B, and thus [T−1]B = [T]−1

B .

Example 4.7.6
Problem: Form the composition C = LT of the two linear transformations
T : ℜ3 → ℜ2 and L : ℜ2 → ℜ2 defined by

T(x, y, z) = (x + y, y − z) and L(u, v) = (2u − v, u),

and then verify (4.7.9) and (4.7.10) using the standard bases S2 and S3 for ℜ2

and ℜ3, respectively.

Solution: The composition C : ℜ3 → ℜ2 is the linear transformation

C(x, y, z) = L
(

T(x, y, z)
)

= L(x + y, y − z) = (2x + y + z, x + y).

The coordinate matrix representations of C, L, and T are

[C]S3S2 =
(

2 1 1
1 1 0

)

, [L]S2 =
(

2 −1
1 0

)

, and [T]S3S2 =
(

1 1 0
0 1 −1

)

.
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Property (4.7.9) is verified because [LT]S3S2 = [C]S3S2 = [L]S2[T]S3S2 . Find
L−1 by looking for scalars βij in L−1(u, v) = (β11u + β12v, β21u + β22v) such
that LL−1 = L−1L = I or, equivalently,

L
(

L−1(u, v)
)

= L−1
(

L(u, v)
)

= (u, v) for all (u, v) ∈ ℜ2.

Computation reveals L−1(u, v) = (v, 2v− u), and (4.7.10) is verified by noting

[L−1]S2 =
(

0 1
−1 2

)

=
(

2 −1
1 0

)−1

= [L]−1
S2

.

Exercises for section 4.7

4.7.1. Determine which of the following functions are linear operators on ℜ2.

(a) T(x, y) = (x, 1 + y), (b) T(x, y) = (y, x),
(c) T(x, y) = (0, xy), (d) T(x, y) = (x2, y2),
(e) T(x, y) = (x, sin y), (f) T(x, y) = (x + y, x − y).

4.7.2. For A ∈ ℜn×n, determine which of the following functions are linear
transformations.

(a) T(Xn×n) = AX − XA, (b) T(xn×1) = Ax + b for b ̸= 0,
(c) T(A) = AT , (d) T(Xn×n) = (X + XT )/2.

4.7.3. Explain why T(0) = 0 for every linear transformation T.

4.7.4. Determine which of the following mappings are linear operators on Pn,
the vector space of polynomials of degree n or less.

(a) T = ξkDk + ξk−1Dk−1 + · · · + ξ1D + ξ0I, where Dk is the
kth-order differentiation operator (i.e., Dkp(t) = dkp/dtk).

(b) T
(

p(t)
)

= tnp′(0) + t.

4.7.5. Let v be a fixed vector in ℜn×1 and let T : ℜn×1 → ℜ be the mapping
defined by T(x) = vTx (i.e., the standard inner product).

(a) Is T a linear operator?
(b) Is T a linear transformation?

4.7.6. For the operator T : ℜ2 → ℜ2 defined by T(x, y) = (x + y, −2x + 4y),
determine [T]B, where B is the basis B =

{(

1
1

)

,
(

1
2

)}

.
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4.7.7. Let T : ℜ2 → ℜ3 be the linear transformation defined by
T(x, y) = (x + 3y, 0, 2x − 4y).

(a) Determine [T]SS′ , where S and S ′ are the standard bases for
ℜ2 and ℜ3, respectively.

(b) Determine [T]SS′′ , where S ′′ is the basis for ℜ3 obtained by
permuting the standard basis according to S ′′ = {e3, e2, e1}.

4.7.8. Let T be the operator on ℜ3 defined by T(x, y, z) = (x−y, y−x, x−z)
and consider the vector

v =

⎛

⎝

1
1
2

⎞

⎠ and the basis B =

⎧

⎨

⎩

⎛

⎝

1
0
1

⎞

⎠ ,

⎛

⎝

0
1
1

⎞

⎠ ,

⎛

⎝

1
1
0

⎞

⎠

⎫

⎬

⎭

.

(a) Determine [T]B and [v]B.
(b) Compute [T(v)]B, and then verify that [T]B[v]B = [T(v)]B.

4.7.9. For A ∈ ℜn×n, let T be the linear operator on ℜn×1 defined by
T(x) = Ax. That is, T is the operator defined by matrix multiplica-
tion. With respect to the standard basis S, show that [T]S = A.

4.7.10. If T is a linear operator on a space V with basis B, explain why
[Tk]B = [T]kB for all nonnegative integers k.

4.7.11. Let P be the projector that maps each point v ∈ ℜ2 to its orthogonal
projection on the line y = x as depicted in Figure 4.7.4.

y =
 x

P(v)

v

Figure 4.7.4

(a) Determine the coordinate matrix of P with respect to the stan-
dard basis.

(b) Determine the orthogonal projection of v =
(

α
β

)

onto the line
y = x.
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4.7.12. For the standard basis S =
{(

1 0
0 0

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)

,

(

0 0
0 1

)}

of ℜ2×2, determine the matrix representation [T]S for each of the fol-
lowing linear operators on ℜ2×2, and then verify [T(U)]S = [T]S[U]S
for U =

(

a b
c d

)

.

(a) T(X2×2) =
X + XT

2
.

(b) T(X2×2) = AX − XA, where A =
(

1 1
−1 −1

)

.

4.7.13. For P2 and P3 (the spaces of polynomials of degrees less than or
equal to two and three, respectively), let S : P2 → P3 be the linear
transformation defined by S(p) =

∫ t
0 p(x)dx. Determine [S]BB′ , where

B = {1, t, t2} and B′ = {1, t, t2, t3}.

4.7.14. Let Q be the linear operator on ℜ2 that rotates each point counter-
clockwise through an angle θ, and let R be the linear operator on ℜ2

that reflects each point about the x -axis.
(a) Determine the matrix of the composition [RQ]S relative to the

standard basis S.
(b) Relative to the standard basis, determine the matrix of the lin-

ear operator that rotates each point in ℜ2 counterclockwise
through an angle 2θ.

4.7.15. Let P : U → V and Q : U → V be two linear transformations, and let
B and B′ be arbitrary bases for U and V, respectively.

(a) Provide the details to explain why [P+Q]BB′ = [P]BB′+[Q]BB′ .
(b) Provide the details to explain why [αP]BB′ = α[P]BB′ , where

α is an arbitrary scalar.

4.7.16. Let I be the identity operator on an n -dimensional space V.
(a) Explain why

[I]B =

⎛

⎜

⎜

⎝

1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞

⎟

⎟

⎠

regardless of the choice of basis B.
(b) Let B = {xi}n

i=1 and B′ = {yi}n
i=1 be two different bases for

V, and let T be the linear operator on V that maps vectors
from B′ to vectors in B according to the rule T(yi) = xi for
i = 1, 2, . . . , n. Explain why

[I]BB′ = [T]B = [T]B′ =
(

[x1]B′

∣

∣

∣
[x2]B′

∣

∣

∣
· · ·

∣

∣

∣
[xn]B′

)

.
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(c) When V = ℜ3, determine [I]BB′ for

B =

⎧

⎨

⎩

⎛

⎝

1
0
0

⎞

⎠ ,

⎛

⎝

0
1
0

⎞

⎠ ,

⎛

⎝

0
0
1

⎞

⎠

⎫

⎬

⎭

, B′ =

⎧

⎨

⎩

⎛

⎝

1
0
0

⎞

⎠ ,

⎛

⎝

1
1
0

⎞

⎠ ,

⎛

⎝

1
1
1

⎞

⎠

⎫

⎬

⎭

.

4.7.17. Let T : ℜ3 → ℜ3 be the linear operator defined by

T(x, y, z) = (2x − y, −x + 2y − z, z − y).

(a) Determine T−1(x, y, z).
(b) Determine [T−1]S , where S is the standard basis for ℜ3.

4.7.18. Let T be a linear operator on an n -dimensional space V. Show that
the following statements are equivalent.

(1) T−1 exists.
(2) T is a one-to-one mapping (i.e., T(x) = T(y) =⇒ x = y ).
(3) N (T) = {0}.
(4) T is an onto mapping (i.e., for each v ∈ V, there is an x ∈ V

such that T(x) = v ).
Hint: Show that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (2),
and then show (2) and (4) =⇒ (1).

4.7.19. Let V be an n -dimensional space with a basis B = {ui}n
i=1.

(a) Prove that a set of vectors {x1,x2, . . . ,xr} ⊆ V is linearly
independent if and only if the set of coordinate vectors

{

[x1]B, [x2]B, . . . , [xr]B
}

⊆ ℜn×1

is a linearly independent set.
(b) If T is a linear operator on V, then the range of T is the set

R (T) = {T(x) | x ∈ V}.

Suppose that the basic columns of [T]B occur in positions
b1, b2, . . . , br. Explain why

{

T(ub1),T(ub2), . . . ,T(ubr )
}

is a
basis for R (T).
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4.6.6. Use ln y = lnα0 + α1t to obtain the least squares estimates α0 = 9.73 and
α1 = .507.

4.6.7. The least squares line is y = 9.64 + .182x and for εi = 9.64 + .182xi − yi, the
sum of the squares of these errors is

∑
i ε2

i = 162.9. The least squares quadratic
is y = 13.97 + .1818x − .4336x2, and the corresponding sum of squares of the
errors is

∑
ε2

i = 1.622. Therefore, we conclude that the quadratic provides a
much better fit.

4.6.8. 230.7 min. (α0 = 492.04, α1 = −23.435, α2 = −.076134, α3 = 1.8624)
4.6.9. x2 is a least squares solution =⇒ AT Ax2 = AT b =⇒ 0 = AT (b−Ax2).

If we set x1 = b−Ax2, then

( Im×m A

AT 0n×n

)(x1

x2

)
=
( Im×m A

AT 0n×n

)(b−Ax2

x2

)
=
(b

0

)
.

The converse is true because
( Im×m A

AT 0n×n

)(x1

x2

)
=
(b

0

)
=⇒ Ax2 = b− x1 and AT x1 = 0

=⇒ AT Ax2 = AT b−AT x1 = AT b.

4.6.10. t ∈ R
(
AT
)

= R
(
AT A

)
=⇒ tT = zT AT A for some z. For each x satisfying

AT Ax = AT b, write

ŷ = tT x = zT AT Ax = zT AT b,

and notice that zT AT b is independent of x.

Solutions for exercises in section 4. 7

4.7.1. (b) and (f)
4.7.2. (a), (c), and (d)
4.7.3. Use any x to write T(0) = T(x− x) = T(x)−T(x) = 0.
4.7.4. (a)
4.7.5. (a) No (b) Yes
4.7.6. T(u1) = (2, 2) = 2u1 + 0u2 and T(u2) = (3, 6) = 0u1 + 3u2 so that [T]B =(

2 0
0 3

)
.

4.7.7. (a) [T]SS′ =

⎛

⎝
1 3
0 0
2 −4

⎞

⎠ (b) [T]SS′′ =

⎛

⎝
2 −4
0 0
1 3

⎞

⎠

4.7.8. [T]B =

⎛

⎝
1 −3/2 1/2
−1 1/2 1/2

0 1/2 −1/2

⎞

⎠ and [v]B =

⎛

⎝
1
1
0

⎞

⎠ .
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4.7.9. According to (4.7.4), the jth column of [T]S is

[T(ej)]S = [Aej ]S = [A∗j ]S = A∗j .

4.7.10. [Tk]B = [TT · · ·T]B = [T]B[T]B · · · [T]B = [T]kB

4.7.11. (a) Sketch a picture to observe that P(e1) =
(

x
x

)
= P(e2) and that the

vectors e1, P(e1), and 0 are vertices of a 45◦ right triangle (as are e2,
P(v2), and 0 ). So, if ∥ ⋆ ∥ denotes length, the Pythagorean theorem may be
applied to yield 1 = 2 ∥P(e1)∥2 = 4x2 and 1 = 2 ∥P(e2)∥2 = 4x2. Thus

⎧
⎪⎪⎨

⎪⎪⎩

P(e1) =
(

1/2
1/2

)
= (1/2)e1 + (1/2)e2

P(e2) =
(

1/2
1/2

)
= (1/2)e1 + (1/2)e2

⎫
⎪⎪⎬

⎪⎪⎭
=⇒ [P]S =

(
1/2 1/2
1/2 1/2

)
.

(b) P(v) =
( α+β

2
α+β

2

)

4.7.12. (a) If U1 =
(

1 0
0 0

)
, U2 =

(
0 1
0 0

)
, U3 =

(
0 0
1 0

)
, U4 =

(
0 0
0 1

)
,

then

T(U1) = U1 + 0U2 + 0U3 + 0U4,

T(U2) =
1
2

(
0 1
1 0

)
= 0U1 + 1/2U2 + 1/2U3 + 0U4,

T(U3) =
1
2

(
0 1
1 0

)
= 0U1 + 1/2U2 + 1/2U3 + 0U4,

T(U4) = 0U1 + 0U2 + 0U3 + U4,

so [T]S =

⎛

⎜⎝

1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

⎞

⎟⎠. To verify [T(U)]S = [T]S [U]S , observe that

T(U) =
(

a (b + c)/2
(b + c)/2 d

)
, [T(U)]S =

⎛

⎜⎝

a
(b + c)/2
(b + c)/2

d

⎞

⎟⎠, [U]S =

⎛

⎜⎝

a
b
c
d

⎞

⎟⎠.

(b) For U1, U2, U3, and U4 as defined above,
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T(U1) =
(

0 −1
−1 0

)
= 0U1 −U2 −U3 + 0U4,

T(U2) =
(

1 2
0 −1

)
= U1 + 2U2 + 0U3 −U4,

T(U3) =
(

1 0
−2 −1

)
= U1 + 0U2 − 2U3 − 1U4,

T(U4) =
(

0 1
1 0

)
= 0U1 + U2 + U3 + 0U4,

so [T]S =

⎛

⎜⎝

0 1 1 0
−1 2 0 1
−1 0 −2 1

0 −1 −1 0

⎞

⎟⎠ . To verify [T(U)]S = [T]S [U]S , observe that

T(U) =
(

c + b −a + 2b + d
−a− 2c + d −b− c

)
and [T(U)]S =

⎛

⎜⎝

c + b
−a + 2b + d
−a− 2c + d
−b− c

⎞

⎟⎠ .

4.7.13. [S]BB′ =

⎛

⎜⎝

0 0 0
1 0 0
0 1/2 0
0 0 1/3

⎞

⎟⎠

4.7.14. (a) [RQ]S = [R]S [Q]S =
(

1 0
0 −1

)(
cos θ − sin θ
sin θ cos θ

)
=
(

cos θ − sin θ
− sin θ − cos θ

)

(b)

[QQ]S = [Q]S [Q]S =
(

cos2 θ − sin2 θ −2 cos θ sin θ
2 cos θ sin θ cos2 θ − sin2 θ

)

=
(

cos 2θ − sin 2θ
sin 2θ cos 2θ

)

4.7.15. (a) Let B = {ui}n
i=1, B′ = {vi}m

i=1. If [P]BB′ = [αij ] and [Q]BB′ = [βij ],
then P(uj) =

∑
i αijvi and Q(uj) =

∑
i βijvi. Thus (P+Q)(uj) =

∑
i(αij +

βij)vi and hence [P + Q]BB′ = [αij +βij ] = [αij ]+ [βij ] = [P]BB′ +[Q]BB′ . The
proof of part (b) is similar.

4.7.16. (a) If B = {xi}n
i=1 is a basis, then I(xj) = 0x1 + 0x2 + · · · + 1xj + · · · + 0xn

so that the jth column in [I]B is just the jth unit column.

(b) Suppose xj =
∑

i βijyi so that [xj ]B′ =

⎛

⎜⎝
β1j

...
βnj

⎞

⎟⎠ . Then

I(xj) = xj =
∑

i

βijyi =⇒ [I]BB′ = [βij ] =
(

[x1]B′

∣∣∣ [x2]B′

∣∣∣ · · ·
∣∣∣ [xn]B′

)
.

Furthermore, T(yj) = xj =
∑

i βijyi =⇒ [T]B′ = [βij ], and

T(xj) = T
(∑

i

βijyi

)
=
∑

i

βijT(yi) =
∑

i

βijxi =⇒ [T]B = [βij ].
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(c)

⎛

⎝
1 −1 0
0 1 −1
0 0 1

⎞

⎠

4.7.17. (a) T−1(x, y, z) = (x + y + z, x + 2y + 2z, x + 2y + 3z)

(b) [T−1]S =

⎛

⎝
1 1 1
1 2 2
1 2 3

⎞

⎠ = [T]−1
S

4.7.18. (1) =⇒ (2) : T(x) = T(y) =⇒ T(x−y) = 0 =⇒ (y−x) = T−1(0) = 0.

(2) =⇒ (3) : T(x) = 0 and T(0) = 0 =⇒ x = 0.

(3) =⇒ (4) : If {ui}n
i=1 is a basis for V, show that N (T) = {0} implies

{T(ui)}n
i=1 is also a basis. Consequently, for each v ∈ V there are coordinates

ξi such that
v =

∑

i

ξiT(ui) = T
(∑

i

ξiui

)
.

(4) =⇒ (2) : For each basis vector ui, there is a vi such that T(vi) = ui.
Show that {vi}n

i=1 is also a basis. If T(x) = T(y), then T(x − y) = 0.

Let x− y =
∑

i ξivi so that 0 = T(x− y) = T
(∑

i ξivi

)
=
∑

i ξiT(vi) =
∑

i ξiui =⇒ each ξi = 0 =⇒ x− y = 0 =⇒ x = y.

(4) and (2) =⇒ (1) : For each y ∈ V, show there is a unique x such
that T(x) = y. Let T̂ be the function defined by the rule T̂(y) = x. Clearly,
TT̂ = T̂T = I. To show that T̂ is a linear function, consider αy1 +y2, and let
x1 and x2 be such that T(x1) = y1, T(x2) = y2. Now, T(αx1+x2) = αy1+y2

so that T̂(αy1 + y2) = αx1 + x2. However, x1 = T̂(y1), x2 = T̂(y2) so that
αT̂(y1) + T̂(y2) = αx1 + x2 = T̂(αy1 + y2). Therefore T̂ = T−1.

4.7.19. (a) 0 =
∑

i αixi ⇐⇒

⎛

⎝
0
...
0

⎞

⎠ = [0]B =
[∑

i αixi

]

B
=
∑

i[αixi]B =
∑

i αi[xi]B

(b) G =
{
T(u1),T(u2), . . . ,T(un)

}
spans R (T). From part (a), the set

{
T(ub1),T(ub2), . . . ,T(ubr )

}

is a maximal independent subset of G if and only if the set
{

[T(ub1)]B, [T(ub2)]B, . . . , [T(ubr )]B
}

is a maximal linearly independent subset of
{
[T(u1)]B, [T(u2)]B, . . . , [T(un)]B

}
,

which are the columns of [T]B.


