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Chapter 4 Vector Spaces

4.7 LINEAR TRANSFORMATIONS

Example 4.7.1

The connection between linear functions and matrices is at the heart of our sub-
ject. As explained on p. 93, matrix algebra grew out of Cayley’s observation that
the composition of two linear functions can be represented by the multiplication
of two matrices. It’s now time to look deeper into such matters and to formalize
the connections between matrices, vector spaces, and linear functions defined on
vector spaces. This is the point at which linear algebra, as the study of linear
functions on vector spaces, begins in earnest.

Linear Transformations

Let U and V be vector spaces over a field F (R or C for us).

o A linear transformation from U into V is defined to be a linear
function T mapping U into V. That is,

Tx+y) =Tkx)+T(y) and T(ax)=aT(x) (4.7.1)
or, equivalently,
T(ax+y)=aT(x)+T(y) forallx,yel,acF. (4.7.2)

e A linear operator on U is defined to be a linear transformation
from U into itself—i.e., a linear function mapping ¢ back into U.

e The function O(x) = 0 that maps all vectors in a space U to the zero
vector in another space V is a linear transformation from ¢/ into V, and,
not surprisingly, it is called the zero transformation.

e The function I(x) = x that maps every vector from a space U back to itself
is a linear operator on U. I is called the identity operator on U.

e For A € ™" and x € R™*!, the function T(x) = Ax is a linear
transformation from R into R because matrix multiplication satisfies
A(ax+y) =aAx+ Ay. T is a linear operator on " if A is n X n.

e If W is the vector space of all functions from R to R, and if V is the space
of all differentiable functions from ® to R, then the mapping D(f) = df /dx
is a linear transformation from V into VW because

dlaf+g) df dg
dx ~ Yz * dx
e If V is the space of all continuous functions from R into R, then the
mapping defined by T(f) = fo‘r f(t)dt is a linear operator on )V because

xT

/Om laf(t) +g(t)] dt:a/omf(t)dwr/o g(t)dt.
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The rotator Q that rotates vectors u in R? counterclockwise through an
angle 6, as shown in Figure 4.7.1, is a linear operator on 2 because the
“action” of Q on u can be described by matrix multiplication in the sense
that the coordinates of the rotated vector Q(u) are given by

Q(u) = xcos —ysinf\ [cos —sind x
~ \zsinf+ycosf ) \ sinf  cosf y /)’
The projector P that maps each point v = (z,y,2) € R to its orthogonal

projection (z,y,0) in the xy-plane, as depicted in Figure 4.7.2, is a linear
operator on 23 because if u = (u1,u2,u3) and v = (vy,vs,v3), then

P(au + v) = (auy +v1, aug+v2,0) = a(uy, uz, 0) + (v1, v2,0) = aP(u) + P(v).

The reflector R that maps each vector v = (z,y,2) € R to its reflection
R(v) = (z,y,—z) about the zy-plane, as shown in Figure 4.7.3, is a linear
operator on 3.

V.
v V= (Xs Y,Z)
Q(u)=(xcosB - ysinB, xsin® + ycos0) }
P(v) }
e u=(x,y) }
[
S \ \\‘
k |
\
\\ ‘
\
\
|
R(v) = (x,y,-2)
Figure 4.7.1 Figure 4.7.2 Figure 4.7.3

sin 6 cos 6
projector P and the reflector R can be represented by matrices

Just as the rotator Q is represented by a matrix [Q] = (COSG —sinf ), the

10 0 10 0
Pl=(0 1 0 and [R]=[0 1 0
00 0 00 —1

in the sense that the “action” of P and R on v = (x,y,2) can be accom-
plished with matrix multiplication using [P] and [R] by writing

1 0 0 T T 1 0 0 T T
01 0fly])=1|v and 01 0 vyl =1 v
0O 0 0 z 0 0O 0 -1 z —z
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It would be wrong to infer from Example 4.7.1 that all linear transformations
can be represented by matrices (of finite size). For example, the differential and
integral operators do not have matrix representations because they are defined
on infinite-dimensional spaces. But linear transformations on finite-dimensional
spaces will always have matrix representations. To see why, the concept of “co-
ordinates” in higher dimensions must first be understood.

Recall that if B = {uy,us,...,u,} is a basis for a vector space U, then
each v € U can be written as v = aju; + asus +-- -+ a,u,. The «;’s in this
expansion are uniquely determined by v because if v = > au; = ). Giu,
then 0 =) . (a; — B;)u;, and this implies o; — 3; =0 (i.e., oy = 3;) for each
i because B is an independent set.

Coordinates of a Vector

Let B ={uj,us,...,u,} bea basis for a vector space U, and let v € U.
The coefficients «; in the expansion v = aju; +asus +-- -+ a,u, are
called the coordinates of v with respect to B, and, from now on,
[v]g will denote the column vector

aq
a9
Vls =

077

Caution! Order is important. If B’ is a permutation of B, then [v]z
is the corresponding permutation of [v]z.

From now on, & = {ej,eq,...,e,} will denote the standard basis of unit
vectors (in natural order) for ™ (or C™). If no other basis is explicitly men-
tioned, then the standard basis is assumed. For example, if no basis is mentioned,
and if we write

then it is understood that this is the representation with respect to S in the
sense that v = [v]s = 8e; + Tey + 4e3. The standard coordinates of a vector
are its coordinates with respect to S. So, 8, 7, and 4 are the standard coordinates
of v in the above example.

Problem: If v is a vector in R whose standard coordinates are
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determine the coordinates of v with respect to the basis

1 1 1
B=<ui=|1],uu=121],u3=1|2
1 2 3

Solution: The object is to find the three unknowns a7, a2, and ag such that
aiuy + asug + agug = v. This is simply a 3 x 3 system of linear equations

1 1 1 o1 8 o1 9
1 2 2 ag | =7 = [vlg=|az | = 2
1 2 3 (0% 4 a3 -3

The general rule for making a change of coordinates is given on p. 252.

Linear transformations possess coordinates in the same way vectors do be-
cause linear transformations from U to )V also form a vector space.

Space of Linear Transformations

e For each pair of vector spaces U and V over F, theset L(U,V) of
all linear transformations from U to V is a vector space over F.

o Let B={uj,us,...,u,} and B = {vy,vs,...,v,,} be bases for U
and V), respectively, and let Bj; be the linear transformation from

U into V defined by Bj;(u) = &;v;, where (&1,E, ..., &) = [us.
That is, pick off the j** coordinate of u, and attach it to v;.

> B = {Bﬂ}Z LT s a basis for LU, V).
> dim LU, V) = (dim?/l) (dim V).

Proof. L(U,V) is a vector space because the defining properties on p. 160 are
satisfied—details are omitted. Prove B, is a basis by demonstrating that it is a
linearly independent spanning set for £(U,V). To establish linear independence,
suppose Z“ n;iBj; = 0 for scalars 7;;, and observe that for each uy € B,

le(uk):{gZ lli‘.?]:él;; (anl ]z) uk anz Jjt uk: anzvz

For each k, the independence of B’ implies that 7,; = 0 for each 7, and thus
B, is linearly independent. To see that By spans L(U,V), let T € L(U,V),
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and determine the action of T on any u € U by using u = 2?21 §ju; and
T(u;) = > ", @;;v; to write

T(u) = T(Z&w) =Y GT(w) =Y &> aiyvs
j=1 j=1 j=1 =1
= a&vi=> a;Bji(u).
1,5 ,J

This holds for all u e U, so T = Z” «;;Bj;, and thus B, spans £L(U,V). §

It now makes sense to talk about the coordinates of T € L(U,V) with
respect to the basis B,. In fact, the rule for determining these coordinates is
contained in the proof above, where it was demonstrated that T = > i a;;jBj;
in which the coordinates «;; are precisely the scalars in

(4.7.3)

a1j
“ . Qz; ,
T(u,) = Zaz‘sz’ or, equivalently, [T(u;)|p = : , j=1,2,...,n.
i=1 ;
Oémj

This suggests that rather than listing all coordinates «;; in a single column
containing mn entries (as we did with coordinate vectors), it’s more logical to
arrange the «;;’s as an m X n matrix in which the j column contains the
coordinates of T(u;) with respect to B’. These ideas are summarized below.

Coordinate Matrix Representations

Let B = {uj,us,...,u,} and B = {vy,va,...,v,,} be bases for U
and V), respectively. The coordinate matriz of T € L(U,V) with
respect to the pair (B,B’) is defined to be the m x n matrix

(Tlss = ([T(w)]s | [T(w)]s

‘ [T(un)]3/>. (4.7.4)

In other words, if T(u;) = aq;vi + ag;Va + -+ + @ Vi, then

Qa1j a1; Qi2 ot Qlp
a2; Qg1 Qo2 Qg

[T(u)]s = and [T]pg = . . .| @475)
Qmj am1 QAm2 Opp

When T is a linear operator on U, and when there is only one basis
involved, [T]g is used in place of [T|ps to denote the (necessarily
square) coordinate matrix of T with respect to B5.
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Example 4.7.3

Example 4.7 4

Problem: If P is the projector defined in Example 4.7.1 that maps each point
v = (1,9,2) € R3 to its orthogonal projection P(v) = (x,y,0) in the zy-plane,
determine the coordinate matrix [P]s with respect to the basis

1 1 1
B = u; — 1 , Uy — 2 , U3 = 2
1 2 3

Solution: According to (4.7.4), the j*" column in [P]z is [P(u;)]s. Therefore,

1 1
P(ul) = 1 = 1111 + 1112 — 1113 > [P(ul)]g = 1 ,
0 _
1 0
P(UQ) = 2 = 0[11 -+ 3112 — 2113 — [P(UQ)]B = 3 ,
0 —2
1 0
P(ug) =12 ]| =0u;+3u; —2u; = [P(u;g)]lg = 31,
0 —2
1 0 0
so that [Plp = 1 3 3
-1 -2 =2

Problem: Consider the same problem given in Example 4.7.3, but use different

bases—say,
1 1 1
B= u; = 0 , Ug = 1 , Uz = 1
0 0 1
and
-1 0 0
B/ = V] = 0 , Vo = 1 , V3 = 1
0 0 —1

For the projector defined by P(z,y,2) = (z,y,0), determine [P|gp.

Solution: Determine the coordinates of each P(u;) with respect to B’, as
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shown below:

=—1vi+0va+0vy = [P(wm)]p = 0],

=—-1vy +1ve +0vgy — [P(UQ)]B/ = 1 ,

=—1vyi +1vye +0vy — [P(u;g)]gl = 1

g,
—~
c
o
SN—
I
O~ OFHFE OO

-1 -1 -1
Therefore, according to (4.7.4), [Plps = ( 0o 1 1).
0 0 0

At the heart of linear algebra is the realization that the theory of finite-
dimensional linear transformations is essentially the same as the theory of ma-
trices. This is due primarily to the fundamental fact that the action of a linear
transformation T on a vector u is precisely matrix multiplication between the
coordinates of T and the coordinates of u.

Action as Matrix Multiplication

Let T € L(U,V), and let B and B’ be bases for U and V), respectively.
For each u € U, the action of T on u is given by matrix multiplication
between their coordinates in the sense that

[T(u)]s = [T]ss [uls. (4.7.6)

Proof. Let B={ui,uz,...,u,} and B = {vi,va,...,vp}. fu=37 §u;
and T(Uj) = Z;n;l Q5Vi, then

51 11 Q12 o O1p

&2 Q21 Qo2 - O2p
s =1 . and [T]sp = : S : ’

fn Um1 Om2 e Umn

so, according to (4.7.3),

T(u) =) aj&vi= Y. ( Oéijfj>vz‘~
i,J Jj=1

=1
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In other words, the coordinates of T(u) with respect to B’ are the terms

Z?Zl a;;& for i =1,2,...,m, and therefore
%j Oéljgj Q11 Qi o Qg &1
; 258 Qo1 Qg Qg S
j
[T(u)]s = : = : : . | =[Tlss[u]s. K
2.5 amj€; Q1 Qm2 o Qmn /o \en

Problem: Show how the action of the operator D(p(t)) = dp/dt on the space
P3 of polynomials of degree three or less is given by matrix multiplication.

Solution: The coordinate matrix of D with respect to the basis B = {1,¢,t2,#3}
is

01 00
0 0 2 0
Dls=14 o o 3
0 0 0 0
If p=p(t)=ag+ ait+ ast?+ ast®, then D(p) = a1 + 2ast + 3ast? so that
o) aq
o a1 . 20&2
pls=| 2| and  DE)s - | 50
(0%} 0
The action of D is accomplished by means of matrix multiplication because
(0751 O 1 0 O (870}
. 20(2 . 0O 0 2 O (5] .
0 0 0 0 O Qs

For T € L(U,V) and L € L(V,W), the composition of L with T is
defined to be the function C :U — W such that C(x) = L(T(x)), and this
composition, denoted by C = LT, is also a linear transformation because

Cax+y) =L(T(ax+y)) = L(aT(x) + T(y))

= aL(T(x)) + L(T(y)) = aC(x) + C(y).
Consequently, if B, B, and B” are bases for U, V, and W, respectively,
then C must have a coordinate matrix representation with respect to (B,B"),
so it’s only natural to ask how [Clgp~ is related to [L|gp» and [T|gs. Re-
call that the motivation behind the definition of matrix multiplication given on
p- 93 was based on the need to represent the composition of two linear trans-
formations, so it should be no surprise to discover that [C|gp~ = [L]g s [T]ss’-
This, along with the other properties given below, makes it clear that studying
linear transformations on finite-dimensional spaces amounts to studying matrix
algebra.
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Connections with Matrix Algebra
e If T'Le L(U,V), and if B and B’ are bases for & and V, then
> [aT|gp = a[T|pp for scalars «, (4.7.7)
> [T+ Ljgs = [Tlss + [L]ss- (4.7.8)
o If TeL(U,V) and L € L(V,W), andif B, B’, and B” are bases
for U, V, and W, respectively, then LT € L(U,WV), and
> [LT]gs = [L]g s [T]ss" - (4.7.9)
e If T € L(U,U) is invertible in the sense that TT™! = T!T =1
for some T~ € L(U,U), then for every basis B of U,

> [T =[T)5". (4.7.10)

Proof. The first three properties (4.7.7)—-(4.7.9) follow directly from (4.7.6). For
example, to prove (4.7.9), let u be any vector in U, and write

[LT]s5"[u]s= [LT(u)] 5, = [L(T ()] 5, =[Llz s [T(w)] 5, = [Llz s [T]ss[u]s.

This is true for all u € U, so [LT|pgr = [L|g'p[T|ss (see Exercise 3.5.5).
Proving (4.7.7) and (4.7.8) is similar—details are omitted. To prove (4.7.10),
note that if dimd = n, then [I|z = I, for all bases B, so property (4.7.9)
implies I, = [I]g = [TT !5 = [T|5[T"']s, and thus [T!|z = [T]z'. N

Problem: Form the composition C = LT of the two linear transformations
T: R - N? and L: R? — N2 defined by

T(z,y,2) =(x+y, y—z) and L(u,v)=2u—wv, u),

and then verify (4.7.9) and (4.7.10) using the standard bases Sy and S3 for R?
and N3, respectively.

Solution: The composition C: R3 — RN? is the linear transformation
C(z,y,2) =L(T(z,y,2)) =L(z +y, y—2)= 2x+y+z, z+y)

The coordinate matrix representations of C, L, and T are

Clss= (T 1 o) Wa=(7 7). md Mss=(o 1 7).



4.7 Linear Transformations 247

Property (4.7.9) is verified because [LT|s,s, = [Cls;s, = [L]s,[T]s,s,. Find
L~! by looking for scalars 3;; in L™ (u,v) = (B11u+ S12v, Ba1u + Baav) such
that LL~! = L7'L =1 or, equivalently,

L(L " (u,v)) =L " (L(u,v)) = (u,v) for all (u,v) € R2.

Computation reveals L™!(u,v) = (v, 2v—u), and (4.7.10) is verified by noting

= (0 ))=(3 7)) =

Exercises for section 4.7

4.7.1. Determine which of the following functions are linear operators on R2.

(a) T(x,y)=(z,1+y), (b) T(z,y)=(y,7),
(¢) T(zx,y) = (0,zy), (d) T(x,y) = (=2, %),
(e) T(z,y) = (w,siny), (f) T(z,y)=(z+y,z—y).

4.7.2. For A € R™"*"  determine which of the following functions are linear

transformations.
(a) T(Xpxn) =AX —-XA, (b) T(xnx1) =Ax+b for b #0,
(c) T(A)=AT, (d) T(Xpxn) = (X+XT)/2.

4.7.3. Explain why T(0) =0 for every linear transformation T.

4.7.4. Determine which of the following mappings are linear operators on P,
the vector space of polynomials of degree n or less.
(a) T = &DF + & DF 1 ... 6D + &I, where DF is the
kth_order differentiation operator (i.e., D*p(t) = d*p/dt*).

(b) T(p(t)) = "' (0) + 1.

4.7.5. Let v be a fixed vector in R"*! and let T : R"*! — R be the mapping
defined by T(x) = vTx (i.e., the standard inner product).
(a) Is T a linear operator?
(b) Is T a linear transformation?

4.7.6. For the operator T : R — R? defined by T(z,y) = (v +vy, —2z +4y),
determine [T]z, where B is the basis B = {(1) : (%) }
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4.7.7.

4.7.8.

4.7.9.

4.7.10.

4.7.11.

Let T :R%2 — R be the linear transformation defined by
T(ﬂi’,y) = (*T + 3y7 07 2z — 4y)
(a) Determine [T)ss/, where S and S’ are the standard bases for
R2 and N3, respectively.
(b) Determine [T]ss~, where S8” is the basis for R3 obtained by
permuting the standard basis according to §” = {es3, ez, e1}.

Let T be the operator on 3 defined by T(x,y,2) = (x—y, y—x, x—2)
and consider the vector

1 1 0 1
v=|1 and the basis B = o], (1], (1
2 1 1 0

(a) Determine [T|g and [v]z.
(b) Compute [T(v)]p, and then verify that [T|g[v]s = [T(v)]s.

For A € R#"*" let T be the linear operator on R"*! defined by
T(x) = Ax. That is, T is the operator defined by matrix multiplica-
tion. With respect to the standard basis S, show that [T]s = A.

If T is a linear operator on a space V with basis B, explain why
[T*]5 = [T]% for all nonnegative integers k.

Let P be the projector that maps each point v € R? to its orthogonal
projection on the line y = = as depicted in Figure 4.7.4.

//*\-v

%

P(v)

FIGURE 4.7.4

(a) Determine the coordinate matrix of P with respect to the stan-
dard basis.
(b) Determine the orthogonal projection of v = (g) onto the line

Yy =x.
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4.7.12.

4.7.13.

4.7.14.

4.7.15.

4.7.16.

. 1 0 0 1 0 0 0 0
For the standard basis S-{(O 0),<0 O)’(l 0>a(0 1)}

of R2*2 determine the matrix representation [T]s for each of the fol-
lowing linear operators on $2*2, and then verify [T(U)|gs = [T]s[U]s

for U = (Z Z)

(a) T(ngg) = ﬁ

(b) T(Xzxz) = AX — XA, where A= (_; _j).

For P, and Ps (the spaces of polynomials of degrees less than or
equal to two and three, respectively), let S : Py — P3 be the linear

transformation defined by S(p) = fg p(x)dz. Determine [S|pg/, where
B=1{1,t,t?} and B = {1,t,t%,t3}.

Let Q be the linear operator on R? that rotates each point counter-
clockwise through an angle #, and let R be the linear operator on R?
that reflects each point about the x -axis.
(a) Determine the matrix of the composition [RQJs relative to the
standard basis S.
(b) Relative to the standard basis, determine the matrix of the lin-
ear operator that rotates each point in R? counterclockwise
through an angle 26.

Let P:U —V and Q :U — V be two linear transformations, and let
B and B’ be arbitrary bases for 4 and V, respectively.
(a) Provide the details to explain why [P+Q|gs = [P|ss +[Qlss -
(b) Provide the details to explain why [aP|gs = «[P|gp/, where
a is an arbitrary scalar.

Let I be the identity operator on an n-dimensional space V.
(a) Explain why

[I]B: :

regardless of the choice of basis B.

(b) Let B={x;}, and B’ = {y;}I"; be two different bases for
VY, and let T be the linear operator on ) that maps vectors
from B’ to vectors in B according to the rule T(y;) = x; for
1 =1,2,...,n. Explain why

W = [Tl = [T = ( bals

: ] [xn]g,).

2]
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(c) When V = R3, determine [I]gp for

1 0 0 1 1 1
B=Xlo].l1].lo]}, B=X|o],[1].[1
0 0 1 0 0 1

4.7.17. Let T : R — N3 be the linear operator defined by
T(.fL’,y,Z) = (2.%’—y, —$+2y—2, z _y)

(a) Determine T~ 1(x,y,2).
(b) Determine [T~!]s, where S is the standard basis for R3.

4.7.18. Let T be a linear operator on an n-dimensional space V. Show that
the following statements are equivalent.

(1) T~ 1 exists.

(2) T is a one-to-one mapping (i.e., T(x) =T(y) = x=y).

(3) N(T)={o}.

(4) T is an onto mapping (i.e., for each v € V, there isan x € V
such that T(x) =v).
Hint: Show that (1) = (2) = (3) = (4) = (2),
and then show (2) and (4) = (1).

4.7.19. Let V be an n-dimensional space with a basis B = {u;}};.
(a) Prove that a set of vectors {xj,X2,...,%,} C V is linearly
independent if and only if the set of coordinate vectors

{[Xl]Ba (x2]B, ..., [XT]B}g%nxl

is a linearly independent set.
(b) If T is a linear operator on V, then the range of T is the set

R(T)={T(x) | x € V}.
Suppose that the basic columns of [T|g occur in positions

bi,ba,...,b,. Explain why {T(up,),T(u,),...,T(w,)} is a
basis for R (T).
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Solutions

4.6.6. Use Iny = Inag + ayt to obtain the least squares estimates «g = 9.73 and
o = .507.

4.6.7. The least squares line is y = 9.64 4 .182x and for ¢; = 9.64 + .182x; — y;, the
sum of the squares of these errorsis ) . £? = 162.9. The least squares quadratic
is y = 13.97 + .1818z — .433622, and the corresponding sum of squares of the
errors is Y &7 = 1.622. Therefore, we conclude that the quadratic provides a
much better fit.

4.6.8. 230.7 min. (ap =492.04, a7 = —23.435, a0 = —.076134, a3 = 1.8624)

4.6.9. x5 is a least squares solution = ATAx,=ATb = 0=AT(b-Ax,).
If we set x; = b — Axy, then

(o on ) ()= (3 0l ) 00) - ()
AT Oan X2 N AT Oan X2 a 0 .

The converse is true because

Ime A X1 b T
( )( )z( ) — Axo=b—-—-x; and A'x;=0
AT 0,xn/ \xo 0

— ATAx,=ATb—- ATx; = AThb.

4.6.10. te R (AT) =R (ATA) — tT =zT AT A for some z. For each x satisfying
ATAx = ATb, write

j=t'x=2TATAx = zTATp,

and notice that z” ATb is independent of x.

Solutions for exercises in section 4. 7

4.7.1. (b) and (f)
4.7.2. (a), (c¢), and (d)
4.7.3. Use any x to write T(0) = T(x —x) = T(x) — T(x) = 0.

4.7.4. (a)
4.7.5. (a) No (b) Yes
4.7.6. T(uy) = (2,2) = 2u; + 0uz and T(uz) = (3,6) = Ouy + 3uy so that [T|p =
2 0
0 3)°
1 3 2 -4
4.7.7. (a) [T]sss = 0 0 (b) [T]ss» =10 0
2 -4 1 3
1 —3/2  1/2
4.78. [Tlg=| -1 1/2 1/2| and vjz= |1
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4.7.9. According to (4.7.4), the j'* column of [T]s is
[T(ej)]s = [Aejls = [Asjls = Asj.

4.7.10. [T*)p=[TT---T)g = [T)|5[T]|s - [T]s = [T]}
4.7.11. (a) Sketch a picture to observe that P(e;) = <i> = P(e3) and that the

vectors e;, P(e1), and 0 are vertices of a 45° right triangle (as are es,
P(v3), and 0). So, if || = || denotes length, the Pythagorean theorem may be
applied to yield 1 =2||P(e1)||> = 422 and 1 =2||P(ey)||® = 422, Thus

P(e;) = (%g) = (1/2)e1 + (1/2)ey

. [P]s=<1/2 1/2).

1/2 1/2 1/2

Pley) = (1/2) = (1/2)e; + (1/2)e;

1 0 0 1 0 0 0 0
4.7.12. (a) If Ul— <0 O), UQ— (O O), U3— <1 O), U4— (0 1),

T(U;) = U; + 0U, + 0U3 + 0Uy,

170 1
T(Uy) = 3 (1 O> =0U; + 1/2U3 + 1/2U3 + 0Uy,

1/0 1

T(U,) = 0U; + 0U, + 0Us + Uy,

10 0 0
so [Ts = | ¢ %; %3 O |- To verify [T(U)]5 = [T)s[U]s. observe that
0 0 0 1
T(U) = ((b+ac)/2 (b+d0)/2>’ [T(U)]s = 2213?; » [Uls = i
d d

(b) For Uy, Uy, Us, and Uy as defined above,
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4.7.13.

4.7.14.

4.7.15.

4.7.16.

Solutions
0 -1
T(U,) = (_1 o) — 0U; — Uy — Us + 0U,,
1 2
T(Uz) = (0 _1) = U; +2U; +0U3 — Uy,
1 0
T(Us) = (_2 _1> — U, +0U, — 2U5 — 1U,,
0 1
T(Uy) = <1 0> = 0U; + Uy 4+ Uz + 0Uy,
0 1 1 0
—1 2 0 1 )
so [T]s 1 0 —2 1| To verify [T(U)|g = [T]s[U]s, observe that
0O -1 -1 0
c+b
_ c+b —a+2b+d | —a+2b+d
T(U) = (—a—2c—|—d —b—rc > and [T(U)]s = —a—2c+d
-b—c
0 0 0
1 0 0
0 0 1/3
1 0 cosf@ —sinf cos@ —sinf
(2) [RQJs = [R]s[Qls = (0 —1) (sin@ cos@) o (—sin@ —cos@)
(b)

cos?f —sin?f  —2cosfsind
[QQls = [Qls[Qls = ( 2cosfsinf  cos? 6 — sin® 9)
cos20 —sin20

- < sin 26 cos 26 )
(a) Let B = {w}i,, B ={vi}jZ;. If [Plsp = [ai;] and [Q]ss = [0i],
then P(u;) =), a;;v; and Q(u;) =, Fi;vi. Thus (P+Q)(u;) = >, (s +
Bij)vi and hence [P+ Qlsp = [avij + 0] = [oi] + [Bi;] = [Plss +[Qlss - The
proof of part (b) is similar.
(a) If B={x;};"; is a basis, then I(x;)=0x; + 0x2 + -+ 1x; +--- + 0x,,
so that the j'* column in [I|z is just the j'* unit column.

Bij

(b) Suppose x; = >, Bi;y; so that [x;]p = | . Then

an
=% =Y By = Mew =[8] = (xils

Furthermore, T(y;) =x; =), 8i;yi = [Tz =[6i;], and

XJ) = (Zﬁzg%) = ZﬁijT(Yi) = Zﬁz’sz‘ = [Tz = [ﬁij]-

' ‘ [Xn]8f>-

[x2] 5/



Solutions

4.7.17.

4.7.18.

4.7.19.

45
1 -1 0
(c) 0o 1 -1
(0 0 1
(a) T Yz,y,2)=(x+y+z z+2y+2z x+2y+32)
1 1 1
(b) [Tl]s—(l 2 2| =[T)5"
1 2 3
1 (2): T(x)=T(y) = T(x-y)=0 = (y—x)=T71(0)=0

(4): If {uw;}}, is a basis for V, show that N (T) = {0} implies
{T(u;)}_, is also a basis. Consequently, for each v € V' there are coordinates

&; such that
v=306Tw) = T( X 6w).

(4) = (2): For each basis vector u,;, there is a v; such that T(v;) = u;.
Show that {v;}I, is also a basis. If T(x) = T(y), then T(x —y) = 0.

Let x—y = > ,&vVv, sothat 0=T(x—-y) = T(ZZ fivi) = > . &T(vi) =
>, &u, = each =0 = x—-y=0 = x=y.

(4) and (2) == (1): For each y € V, show there is a unique x such
that T(x) =y. Let T be the function defined by the rule T(y) = x. Clearly,
TT =TT = I. To show that T is a linear function, consider ay;+y2, and let
x1 and x5 besuch that T(x1) =y1, T(x2) = y2. Now, T(ax;+x2) = ay1+y2
so that T(ay; + y2) = axq + x2. However, x; = T(y1), x2 = T(y2) so that

A~

aT(y1) + T(y2) = ax; + x5 = T(ay, +y2). Therefore T =T,
0

() 0=, am =[] =[0)s= |5 ax| =Y lax]s =Y, alxls
0
(b) G= {T(ul),T(uQ), . .,T(un)} spans R (T). From part (a), the set

{T(ubl), T(w,),. .., T(ubr)}

is a maximal independent subset of G if and only if the set

{17, )]s, [T ()]s, . [T(w, )]s}

is a maximal linearly independent subset of

{[T(ul)]37 [T(UQ)]B’ R [T(un)]B}a

which are the columns of [T]z.



