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4.8 CHANGE OF BASIS AND SIMILARITY

By their nature, coordinate matrix representations are basis dependent. However,
it’s desirable to study linear transformations without reference to particular bases
because some bases may force a coordinate matrix representation to exhibit
special properties that are not present in the coordinate matrix relative to other
bases. To divorce the study from the choice of bases it’s necessary to somehow
identify properties of coordinate matrices that are invariant among all bases—
these are properties intrinsic to the transformation itself, and they are the ones
on which to focus. The purpose of this section is to learn how to sort out these
basis-independent properties.

The discussion is limited to a single finite-dimensional space V and to linear
operators on V. Begin by examining how the coordinates of v ∈ V change as
the basis for V changes. Consider two different bases

B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} .

It’s convenient to regard B as an old basis for V and B′ as a new basis for V.
Throughout this section T will denote the linear operator such that

T(yi) = xi for i = 1, 2, . . . , n. (4.8.1)

T is called the change of basis operator because it maps the new basis vectors
in B′ to the old basis vectors in B. Notice that [T]B = [T]B′ = [I]BB′ . To see
this, observe that

xi =
n
∑

j=1

αjyj =⇒ T(xi) =
n
∑

j=1

αjT(yj) =
n
∑

j=1

αjxj ,

which means [xi]B′ = [T(xi)]B , so, according to (4.7.4),

[T]B =
(

[T(x1)]B [T(x2)]B · · · [T(xn)]B
)

=
(

[x1]B′ [x2]B′ · · · [xn]B′

)

= [T]B′ .

The fact that [I]BB′ = [T]B follows because [I(xi)]B′ = [xi]B′ . The matrix

P = [I]BB′ = [T]B = [T]B′ (4.8.2)

will hereafter be referred to as a change of basis matrix. Caution! [I]BB′ is
not necessarily the identity matrix—see Exercise 4.7.16—and [I]BB′ ̸= [I]B′B.

We are now in a position to see how the coordinates of a vector change as
the basis for the underlying space changes.
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Changing Vector Coordinates
Let B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} be bases for V,
and let T and P be the associated change of basis operator and change
of basis matrix, respectively—i.e., T(yi) = xi, for each i, and

P = [T]B = [T]B′ = [I]BB′ =
(

[x1]B′

∣

∣

∣
[x2]B′

∣

∣

∣
· · ·
∣

∣

∣
[xn]B′

)

. (4.8.3)

• [v]B′ = P[v]B for all v ∈ V. (4.8.4)

• P is nonsingular.

• No other matrix can be used in place of P in (4.8.4).

Proof. Use (4.7.6) to write [v]B′ = [I(v)]B′ = [I]BB′ [v]B = P[v]B, which is
(4.8.4). P is nonsingular because T is invertible (in fact, T−1(xi) = yi), and
because (4.7.10) insures [T−1]B = [T]−1

B = P−1. P is unique because if W is
another matrix satisfying (4.8.4) for all v ∈ V, then (P − W)[v]B = 0 for all
v. Taking v = xi yields (P − W)ei = 0 for each i, so P − W = 0.

If we think of B as the old basis and B′ as the new basis, then the change
of basis operator T acts as

T(new basis) = old basis,

while the change of basis matrix P acts as

new coordinates = P(old coordinates).

For this reason, T should be referred to as the change of basis operator from
B′ to B, while P is called the change of basis matrix from B to B′.

Example 4.8.1
Problem: For the space P2 of polynomials of degree 2 or less, determine the
change of basis matrix P from B to B′, where

B = {1, t, t2} and B′ = {1, 1 + t, 1 + t + t2},

and then find the coordinates of q(t) = 3 + 2t + 4t2 relative to B′.

Solution: According to (4.8.3), the change of basis matrix from B to B′ is

P =
(

[x1]B′

∣

∣

∣
[x2]B′

∣

∣

∣
[x3]B′

)

.
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In this case, x1 = 1, x2 = t, and x3 = t2, and y1 = 1, y2 = 1 + t, and
y3 = 1 + t + t2, so the coordinates [xi]B′ are computed as follows:

1 = 1(1) + 0(1 + t) + 0(1 + t + t2) = 1y1 + 0y2 + 0y3,

t = − 1(1) + 1(1 + t) + 0(1 + t + t2) = − 1y1 + 1y2 + 0y3,

t2 = 0(1) − 1(1 + t) + 1(1 + t + t2) = 0y1 − 1y2 + 1y3.

Therefore,

P =
(

[x1]B′

∣

∣

∣
[x2]B′

∣

∣

∣
[x3]B′

)

=

⎛

⎝

1 − 1 0
0 1 − 1
0 0 1

⎞

⎠ ,

and the coordinates of q = q(t) = 3 + 2t + 4t2 with respect to B′ are

[q]B′ = P[q]B =

⎛

⎝

1 − 1 0
0 1 − 1
0 0 1

⎞

⎠

⎛

⎝

3
2
4

⎞

⎠ =

⎛

⎝

1
− 2

4

⎞

⎠ .

To independently check that these coordinates are correct, simply verify that

q(t) = 1(1) − 2(1 + t) + 4(1 + t + t2).

It’s now rather easy to describe how the coordinate matrix of a linear oper-
ator changes as the underlying basis changes.

Changing Matrix Coordinates
Let A be a linear operator on V, and let B and B′ be two bases for
V. The coordinate matrices [A]B and [A]B′ are related as follows.

[A]B = P−1[A]B′P, where P = [I]BB′ (4.8.5)

is the change of basis matrix from B to B′. Equivalently,

[A]B′ = Q−1[A]BQ, where Q = [I]B′B = P−1 (4.8.6)

is the change of basis matrix from B′ to B.
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Proof. Let B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} , and observe that
for each j, (4.7.6) can be used to write

[

A(xj)
]

B′
= [A]B′ [xj ]B′ = [A]B′P∗j =

[

[A]B′P
]

∗j
.

Now use the change of coordinates rule (4.8.4) together with the fact that
[

A(xj)
]

B =
[

[A]B
]

∗j
(see (4.7.4)) to write

[

A(xj)
]

B′
= P

[

A(xj)
]

B
= P

[

[A]B
]

∗j
=
[

P[A]B
]

∗j
.

Consequently,
[

[A]B′P
]

∗j
=
[

P[A]B
]

∗j
for each j, so [A]B′P = P[A]B. Since

the change of basis matrix P is nonsingular, it follows that [A]B = P−1[A]B′P,
and (4.8.5) is proven. Setting Q = P−1 in (4.8.5) yields [A]B′ = Q−1[A]BQ.
The matrix Q = P−1 is the change of basis matrix from B′ to B because if T
is the change of basis operator from B′ to B (i.e., T(yi) = xi ), then T−1 is
the change of basis operator from B to B′ (i.e., T−1(xi) = yi ), and according
to (4.8.3), the change of basis matrix from B′ to B is

[I]B′B =
(

[y1]B
∣

∣

∣
[y2]B

∣

∣

∣
· · ·

∣

∣

∣
[yn]B

)

= [T−1]B = [T]−1
B = P−1 = Q.

Example 4.8.2
Problem: Consider the linear operator A(x, y) = (y, − 2x + 3y) on ℜ2 along
with the two bases

S =
{(

1
0

)

,

(

0
1

)}

and S ′ =
{(

1
1

)

,

(

1
2

)}

.

First compute the coordinate matrix [A]S as well as the change of basis matrix
Q from S ′ to S, and then use these two matrices to determine [A]S′ .

Solution: The matrix of A relative to S is obtained by computing

A(e1) =A(1, 0) = (0, − 2) = (0)e1 + (− 2)e2,

A(e2) =A(0, 1) = (1, 3) = (1)e1 + (3)e2,

so that [A]S =
(

[A(e1)]S
∣

∣ [A(e2)]S
)

=
(

0 1
−2 3

)

. According to (4.8.6), the
change of basis matrix from S ′ to S is

Q =
(

[y1]S
∣

∣

∣
[y2]S

)

=
(

1 1
1 2

)

,
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and the matrix of A with respect to S ′ is

[A]S′ = Q−1[A]SQ =
(

2 − 1
− 1 1

)(

0 1
− 2 3

)(

1 1
1 2

)

=
(

1 0
0 2

)

.

Notice that [A]S′ is a diagonal matrix, whereas [A]S is not. This shows that
the standard basis is not always the best choice for providing a simple matrix
representation. Finding a basis so that the associated coordinate matrix is as
simple as possible is one of the fundamental issues of matrix theory. Given an
operator A, the solution to the general problem of determining a basis B so
that [A]B is diagonal is summarized on p. 520.

Example 4.8.3
Problem: Consider a matrix Mn×n to be a linear operator on ℜn by defining
M(v) = Mv (matrix–vector multiplication). If S is the standard basis for ℜn,
and if S ′ = {q1,q2, . . . ,qn} is any other basis, describe [M]S and [M]S′ .

Solution: The jth column in [M]S is [Mej ]S = [M∗j ]S = M∗j , and hence
[M]S = M. That is, the coordinate matrix of M with respect to S is M itself.
To find [M]S′ , use (4.8.6) to write [M]S′ = Q−1[M]SQ = Q−1MQ, where

Q = [I]S′S =
(

[q1]S
∣

∣ [q2]S
∣

∣ · · ·
∣

∣ [qn]S
)

=
(

q1

∣

∣q2

∣

∣ · · ·
∣

∣qn

)

.

Conclusion: The matrices M and Q−1MQ represent the same linear operator
(namely, M), but with respect to two different bases (namely, S and S ′). So,
when considering properties of M (as a linear operator), it’s legitimate to replace
M by Q−1MQ. Whenever the structure of M obscures its operator properties,
look for a basis S ′ = {Q∗1,Q∗2, . . . ,Q∗n} (or, equivalently, a nonsingular matrix
Q) such that Q−1MQ has a simpler structure. This is an important theme
throughout linear algebra and matrix theory.

For a linear operator A, the special relationships between [A]B and [A]B′

that are given in (4.8.5) and (4.8.6) motivate the following definitions.

Similarity
• Matrices Bn×n and Cn×n are said to be similar matrices when-

ever there exists a nonsingular matrix Q such that B = Q−1CQ.
We write B ≃ C to denote that B and C are similar.

• The linear operator f : ℜn×n → ℜn×n defined by f(C) = Q−1CQ
is called a similarity transformation.
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Equations (4.8.5) and (4.8.6) say that any two coordinate matrices of a
given linear operator must be similar. But must any two similar matrices be
coordinate matrices of the same linear operator? Yes, and here’s why. Suppose
C = Q−1BQ, and let A(v) = Bv be the linear operator defined by matrix–
vector multiplication. If S is the standard basis, then it’s straightforward to see
that [A]S = B (Exercise 4.7.9). If B′ = {Q∗1,Q∗2, . . . ,Q∗n} is the basis con-
sisting of the columns of Q, then (4.8.6) insures that [A]B′ = [I]−1

B′S [A]S [I]B′S ,
where

[I]B′S =
(

[Q∗1]S
∣

∣

∣
[Q∗2]S

∣

∣

∣
· · ·
∣

∣

∣
[Q∗n]S

)

= Q.

Therefore, B = [A]S and C = Q−1BQ = Q−1[A]SQ = [A]B′ , so B and
C are both coordinate matrix representations of A. In other words, similar
matrices represent the same linear operator.

As stated at the beginning of this section, the goal is to isolate and study
coordinate-independent properties of linear operators. They are the ones de-
termined by sorting out those properties of coordinate matrices that are ba-
sis independent. But, as (4.8.5) and (4.8.6) show, all coordinate matrices for a
given linear operator must be similar, so the coordinate-independent properties
are exactly the ones that are similarity invariant (invariant under similarity
transformations). Naturally, determining and studying similarity invariants is an
important part of linear algebra and matrix theory.

Example 4.8.4
Problem: The trace of a square matrix C was defined in Example 3.3.1 to be
the sum of the diagonal entries

trace (C) =
∑

i

cii.

Show that trace is a similarity invariant, and explain why it makes sense to talk
about the trace of a linear operator without regard to any particular basis. Then
determine the trace of the linear operator on ℜ2 that is defined by

A(x, y) = (y, − 2x + 3y). (4.8.7)

Solution: As demonstrated in Example 3.6.5, trace (BC) = trace (CB), when-
ever the products are defined, so

trace
(

Q−1CQ
)

= trace
(

CQQ−1
)

= trace (C),
and thus trace is a similarity invariant. This allows us to talk about the trace of
a linear operator A without regard to any particular basis because trace ([A]B)
is the same number regardless of the choice of B. For example, two coordinate
matrices of the operator A in (4.8.7) were computed in Example 4.8.2 to be

[A]S =
(

0 1
− 2 3

)

and [A]S′ =
(

1 0
0 2

)

,

and it’s clear that trace ([A]S) = trace ([A]S′) = 3. Since trace ([A]B) = 3 for
all B, we can legitimately define trace (A) = 3.
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Exercises for section 4.8

4.8.1. Explain why rank is a similarity invariant.

4.8.2. Explain why similarity is transitive in the sense that A ≃ B and B ≃ C
implies A ≃ C.

4.8.3. A(x, y, z) = (x + 2y − z, − y, x + 7z) is a linear operator on ℜ3.
(a) Determine [A]S , where S is the standard basis.
(b) Determine [A]S′ as well as the nonsingular matrix Q such that

[A]S′ = Q−1[A]SQ for S ′ =
{(

1
0
0

)

,

(

1
1
0

)

,

(

1
1
1

)}

.

4.8.4. Let A =
(

1 2 0
3 1 4
0 1 5

)

and B =
{(

1
1
1

)

,

(

1
2
2

)

,

(

1
2
3

)}

. Consider A

as a linear operator on ℜn×1 by means of matrix multiplication A(x) =
Ax, and determine [A]B.

4.8.5. Show that C =
(

4 6
3 4

)

and B =
(

−2 −3
6 10

)

are similar matrices, and
find a nonsingular matrix Q such that C = Q−1BQ. Hint: Consider
B as a linear operator on ℜ2, and compute [B]S and [B]S′ , where S
is the standard basis, and S ′ =

{(

2
−1

)

,
(

−3
2

)}

.

4.8.6. Let T be the linear operator T(x, y) = (− 7x − 15y, 6x + 12y). Find
a basis B such that [T]B =

(

2 0
0 3

)

, and determine a matrix Q such
that [T]B = Q−1[T]SQ, where S is the standard basis.

4.8.7. By considering the rotator P(x, y) = (x cos θ − y sin θ, x sin θ + y cos θ)
described in Example 4.7.1 and Figure 4.7.1, show that the matrices

R =
(

cos θ − sin θ
sin θ cos θ

)

and D =
(

eiθ 0
0 e−iθ

)

are similar over the complex field. Hint: In case you have forgotten (or
didn’t know), eiθ = cos θ + i sin θ.
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4.8.8. Let λ be a scalar such that (C − λI)n×n is singular.
(a) If B ≃ C, prove that (B − λI) is also singular.
(b) Prove that (B − λiI) is singular whenever Bn×n is similar to

D =

⎛

⎜

⎜

⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞

⎟

⎟

⎠

.

4.8.9. If A ≃ B, show that Ak ≃ Bk for all nonnegative integers k.

4.8.10. Suppose B = {x1,x2, . . . ,xn} and B′ = {y1,y2, . . . ,yn} are bases for
an n -dimensional subspace V ⊆ ℜm×1, and let Xm×n and Ym×n be
the matrices whose columns are the vectors from B and B′, respectively.

(a) Explain why YT Y is nonsingular, and prove that the change
of basis matrix from B to B′ is P =

(

YT Y
)−1YT X.

(b) Describe P when m = n.

4.8.11. (a) N is nilpotent of index k when Nk = 0 but Nk−1 ̸= 0. If N
is a nilpotent operator of index n on ℜn, and if Nn−1(y) ̸= 0,
show B =

{

y,N(y),N2(y), . . . ,Nn−1(y)
}

is a basis for ℜn,
and then demonstrate that

[N]B = J =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎞

⎟

⎟

⎟

⎟

⎠

.

(b) If A and B are any two n × n nilpotent matrices of index n,
explain why A ≃ B.

(c) Explain why all n × n nilpotent matrices of index n must have
a zero trace and be of rank n − 1.

4.8.12. E is idempotent when E2 = E. For an idempotent operator E on ℜn,
let X = {xi}r

i=1 and Y = {yi}n−r
i=1 be bases for R (E) and N (E),

respectively.
(a) Prove that B = X ∪Y is a basis for ℜn. Hint: Show Exi = xi

and use this to deduce that B is linearly independent.
(b) Show that [E]B =

(

Ir 0
0 0

)

.

(c) Explain why two n × n idempotent matrices of the same rank
must be similar.

(d) If F is an idempotent matrix, prove that rank (F) = trace (F).
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Solutions for exercises in section 4. 8

4.8.1. Multiplication by nonsingular matrices does not change rank.
4.8.2. A = Q−1BQ and B = P−1CP =⇒ A = (PQ)−1C(PQ).

4.8.3. (a) [A]S =

⎛

⎝
1 2 −1
0 −1 0
1 0 7

⎞

⎠

(b) [A]S′ =

⎛

⎝
1 4 3
−1 −2 −9

1 1 8

⎞

⎠ and Q =

⎛

⎝
1 1 1
0 1 1
0 0 1

⎞

⎠

4.8.4. Put the vectors from B into a matrix Q and compute

[A]B = Q−1AQ =

⎛

⎝
−2 −3 −7

7 9 12
−2 −1 0

⎞

⎠ .

4.8.5. [B]S = B and [B]S′ = C. Therefore, C = Q−1BQ, where Q =
(

2 −3
−1 2

)

is the change of basis matrix from S ′ to S.
4.8.6. If B = {u,v} is such a basis, then T(u) = 2u and T(v) = 3v. For u =

(u1, u2), T(u) = 2u implies

−7u1−15u2 = 2u1

6u1 + 12u2 = 2u2,

or
−9u1−15u2 = 0

6u1 + 10u2 = 0,

so u1 = (−5/3)u2 with u2 being free. Letting u2 =−3 produces u = (5,−3).

Similarly, a solution to T(v) = 3v is v = (−3, 2). [T]S =
(
−7 −15

6 12

)
and

[T]B =
(

2 0
0 3

)
. For Q =

(
5 −3
−3 2

)
, [T]B = Q−1[T]SQ.

4.8.7. If sin θ = 0, the result is trivial. Assume sin θ ̸= 0. Notice that with respect
to the standard basis S, [P]S = R. This means that if R and D are to be
similar, then there must exist a basis B = {u,v} such that [P]B = D, which
implies that P(u) = eiθu and P(v) = e−iθv. For u = (u1, u2), P(u) = eiθu
implies

u1 cos θ−u2 sin θ = eiθu1 = u1 cos θ + iu1 sin θ

u1 sin θ + u2 cos θ = eiθu2 = u2 cos θ + iu2 sin θ,

or
iu1 + u2 = 0
u1−iu2 = 0,
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so u1 = iu2 with u2 being free. Letting u2 = 1 produces u = (i, 1). Similarly,
a solution to P(v) = e−iθv is v = (1, i). Now, [P]S = R and [P]B = D so
that R and D must be similar. The coordinate change matrix from B to S

is Q =
(

i 1
1 i

)
, and therefore D = Q−1RQ.

4.8.8. (a) B = Q−1CQ =⇒ (B−λI) = Q−1CQ−λQ−1Q = Q−1 (C−λI)Q. The
result follows because multiplication by nonsingular matrices does not change
rank.
(b) B = P−1DP =⇒ B−λiI = P−1(D−λiI)P and (D−λiI) is singular
for each λi. Now use part (a).

4.8.9. B = P−1AP =⇒ Bk = P−1APP−1AP · · ·P−1AP = P−1AA · · ·AP =
P−1AkP

4.8.10. (a) YT Y is nonsingular because rank
(
YT Y

)
n×n

= rank (Y) = n. If

[v]B =

⎛

⎝
α1
...

αn

⎞

⎠ and [v]B′ =

⎛

⎜⎝
β1
...

βn

⎞

⎟⎠ ,

then
v =

∑

i

αixi = X[v]B and v =
∑

i

βiyi = Y[v]B′

=⇒ X[v]B = Y[v]B′ =⇒ YT X[v]B = YT Y[v]B′

=⇒ (YT Y)−1YT X[v]B = [v]B′ .

(b) When m = n, Y is square and (YT Y)−1YT = Y−1 so that P = Y−1X.
4.8.11. (a) Because B contains n vectors, you need only show that B is linearly in-

dependent. To do this, suppose
∑n−1

i=0 αiNi(y) = 0 and apply Nn−1 to both
sides to get α0Nn−1(y) = 0 =⇒ α0 = 0. Now

∑n−1
i=1 αiNi(y) = 0. Apply

Nn−2 to both sides of this to conclude that α1 = 0. Continue this process until
you have α0 = α1 = · · · = αn−1 = 0.

(b) Any n× n nilpotent matrix of index n can be viewed as a nilpotent operator
of index n on ℜn. Furthermore, A = [A]S and B = [B]S , where S is the
standard basis. According to part (a), there are bases B and B′ such that
[A]B = J and [B]B′ = J. Since [A]S ≃ [A]B, it follows that A ≃ J. Similarly
B ≃ J, and hence A ≃ B by Exercise 4.8.2.

(c) Trace and rank are similarity invariants, and part (a) implies that every
n× n nilpotent matrix of index n is similar to J, and trace (J) = 0 and
rank (J) = n−1.

4.8.12. (a) xi ∈ R (E) =⇒ xi = E(vi) for some vi =⇒ E(xi) = E2(vi) =
E(vi) = xi. Since B contains n vectors, you need only show that B is linearly
independent. 0 =

∑
i αixi + βiyi =⇒ 0 = E(0) =

∑
i αiE(xi) + βiE(yi) =∑

i αixi =⇒ αi ’s = 0 =⇒
∑

i βiyi = 0 =⇒ βi ’s = 0.
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(b) Let B = X ∪ Y = {b1,b2, . . . ,bn}. For j = 1, 2, . . . , r, the jth column
of [E]B is [E(bj)]B = [E(xj)]B = ej . For j = r + 1, r + 2, . . . , n, [E(bj)]B =
[E(yj−r)]B = [0]B = 0.

(c) Suppose that B and C are two idempotent matrices of rank r. If you
regard them as linear operators on ℜn, then, with respect to the standard basis,
[B]S = B and [C]S = C. You know from part (b) that there are bases U and

V such that [B]U = [C]V =
(

Ir 0
0 0

)
= P. This implies that B ≃ P, and

P ≃ C. From Exercise 4.8.2, it follows that B ≃ C.

(d) It follows from part (c) that F ≃ P =
(

Ir 0
0 0

)
. Since trace and rank are

similarity invariants, trace (F) = trace (P) = r = rank (P) = rank (F).

Solutions for exercises in section 4. 9

4.9.1. (a) Yes, because T(0) = 0. (b) Yes, because x ∈ V =⇒ T(x) ∈ V.
4.9.2. Every subspace of V is invariant under I.
4.9.3. (a) X is invariant because x ∈ X ⇐⇒ x = (α, β, 0, 0) for α, β ∈ ℜ, so

T(x) = T(α, β, 0, 0) = (α + β, β, 0, 0) ∈ X .

(b)
[
T/X

]

{e1,e2}
=
(

1 1
0 1

)

(c) [T]B =

⎛

⎜⎜⎝

1 1 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞

⎟⎟⎠

4.9.4. (a) Q is nonsingular. (b) X is invariant because

T(α1Q∗1 + α2Q∗2) = α1

⎛

⎜⎝

1
1
−2

3

⎞

⎟⎠+ α2

⎛

⎜⎝

1
2
−2

2

⎞

⎟⎠ = α1Q∗1 + α2(Q∗1 + Q∗2)

= (α1 + α2)Q∗1 + α2Q∗2 ∈ span {Q∗1, Q∗2} .

Y is invariant because

T(α3Q∗3 + α4Q∗4) = α3

⎛

⎜⎝

0
0
0
0

⎞

⎟⎠+ α4

⎛

⎜⎝

0
3
1
−4

⎞

⎟⎠ = α4Q∗3 ∈ span {Q∗3, Q∗4} .

(c) According to (4.9.10), Q−1TQ should be block diagonal.


