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4.9 INVARIANT SUBSPACES

For a linear operator T on a vector space V, and for X ⊆ V,

T(X ) = {T(x) | x ∈ X}

is the set of all possible images of vectors from X under the transformation T.
Notice that T(V) = R (T). When X is a subspace of V, it follows that T(X )
is also a subspace of V, but T(X ) is usually not related to X . However, in
some special cases it can happen that T(X ) ⊆ X , and such subspaces are the
focus of this section.

Invariant Subspaces
• For a linear operator T on V, a subspace X ⊆ V is said to be an

invariant subspace under T whenever T(X ) ⊆ X .

• In such a situation, T can be considered as a linear operator on X
by forgetting about everything else in V and restricting T to act
only on vectors from X . Hereafter, this restricted operator will
be denoted by T/X .

Example 4.9.1
Problem: For

A =

⎛

⎝

4 4 4
−2 −2 −5

1 2 5

⎞

⎠ , x1 =

⎛

⎝

2
−1

0

⎞

⎠ , and x2 =

⎛

⎝

−1
2

−1

⎞

⎠ ,

show that the subspace X spanned by B = {x1, x2} is an invariant subspace
under A. Then describe the restriction A/X and determine the coordinate
matrix of A/X relative to B.

Solution: Observe that Ax1 = 2x1 ∈ X and Ax2 = x1 + 2x2 ∈ X , so the
image of any x = αx1 + βx2 ∈ X is back in X because

Ax = A(αx1+βx2) = αAx1+βAx2 = 2αx1+β(x1+2x2) = (2α+β)x1+2βx2.

This equation completely describes the action of A restricted to X , so

A/X (x) = (2α + β)x1 + 2βx2 for each x = αx1 + βx2 ∈ X .

Since A/X (x1) = 2x1 and A/X (x2) = x1 + 2x2, we have

[

A/X

]

B
=

(

[

A/X (x1)
]

B

∣

∣

∣

∣

∣

[

A/X (x2)
]

B

)

=
(

2 1
0 2

)

.
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The invariant subspaces for a linear operator T are important because they
produce simplified coordinate matrix representations of T. To understand how
this occurs, suppose X is an invariant subspace under T, and let

BX = {x1,x2, . . . ,xr}

be a basis for X that is part of a basis

B = {x1,x2, . . . ,xr,y1,y2, . . . ,yq}

for the entire space V. To compute [T]B, recall from the definition of coordinate
matrices that

[T]B =
(

[T(x1)]B
∣

∣

∣
· · ·
∣

∣

∣
[T(xr)]B

∣

∣

∣
[T(y1)]B

∣

∣

∣
· · ·
∣

∣

∣
[T(yq)]B

)

. (4.9.1)

Because each T(xj) is contained in X , only the first r vectors from B are
needed to represent each T(xj), so, for j = 1, 2, . . . , r,

T(xj) =
r
∑

i=1

αijxi and [T(xj)]B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α1j

...
αrj

0
...
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.9.2)

The space
Y = span {y1,y2, . . . ,yq} (4.9.3)

may not be an invariant subspace for T, so all the basis vectors in B may be
needed to represent the T(yj) ’s. Consequently, for j = 1, 2, . . . , q,

T(yj) =
r
∑

i=1

βijxi +
q
∑

i=1

γijyi and [T(yj)]B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

β1j

...
βrj

γ1j

...
γqj

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.9.4)

Using (4.9.2) and (4.9.4) in (4.9.1) produces the block-triangular matrix

[T]B =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

α11 · · · α1r β11 · · · β1q

...
. . .

...
...

. . .
...

αr1 · · · αrr βr1 · · · βrq

0 · · · 0 γ11 · · · γ1q

...
. . .

...
...

. . .
...

0 · · · 0 γq1 · · · γqq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.9.5)
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The equations T(xj) =
∑r

i=1 αijxi in (4.9.2) mean that

[

T/X (xj)
]

BX
=

⎛

⎜

⎜

⎝

α1j

α2j

...
αrj

⎞

⎟

⎟

⎠

, so
[

T/X

]

BX
=

⎛

⎜

⎜

⎝

α11 α12 · · · α1r

α21 α22 · · · α2r
...

...
. . .

...
αr1 αr2 · · · αrr

⎞

⎟

⎟

⎠

,

and thus the matrix in (4.9.5) can be written as

[T]B =

(
[

T/X

]

BX
Br×q

0 Cq×q

)

. (4.9.6)

In other words, (4.9.6) says that the matrix representation for T can be made
to be block triangular whenever a basis for an invariant subspace is available.

The more invariant subspaces we can find, the more tools we have to con-
struct simplified matrix representations. For example, if the space Y in (4.9.3)
is also an invariant subspace for T, then T(yj) ∈ Y for each j = 1, 2, . . . , q,
and only the yi ’s are needed to represent T(yj) in (4.9.4). Consequently, the
βij ’s are all zero, and [T]B has the block-diagonal form

[T]B =
(

Ar×r 0
0 Cq×q

)

=

⎛

⎝

[

T/X

]

Bx

0

0
[

T/Y

]

By

⎞

⎠ .

This notion easily generalizes in the sense that if B = BX∪BY∪· · ·∪BZ is a basis
for V, where BX ,BY , . . . ,BZ are bases for invariant subspaces under T that
have dimensions r1, r2, . . . , rk, respectively, then [T]B has the block-diagonal
form

[T]B =

⎛

⎜

⎜

⎝

Ar1×r1 0 · · · 0
0 Br2×r2 · · · 0
...

...
. . .

...
0 0 · · · Crk×rk

⎞

⎟

⎟

⎠

,

where
A =

[

T/X

]

Bx

, B =
[

T/Y

]

By

, . . . , C =
[

T/Z

]

Bz

.

The situations discussed above are also reversible in the sense that if the
matrix representation of T has a block-triangular form

[T]B =
(

Ar×r Br×q

0 Cq×q

)

relative to some basis

B = {u1,u2, . . . ,ur,w1,w2, . . . ,wq},
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then the r -dimensional subspace U = span {u1,u2, . . . ,ur} spanned by the
first r vectors in B must be an invariant subspace under T. Furthermore, if
the matrix representation of T has a block-diagonal form

[T]B =
(

Ar×r 0
0 Cq×q

)

relative to B, then both

U = span {u1,u2, . . . ,ur} and W = span {w1,w2, . . . ,wq}

must be invariant subspaces for T. The details are left as exercises.
The general statement concerning invariant subspaces and coordinate ma-

trix representations is given below.

Invariant Subspaces and Matrix Representations
Let T be a linear operator on an n-dimensional space V, and let
X ,Y, . . . ,Z be subspaces of V with respective dimensions r1, r2, . . . , rk

and bases BX ,BY , . . . ,BZ . Furthermore, suppose that
∑

i ri = n and
B = BX ∪ BY ∪ · · · ∪ BZ is a basis for V.

• The subspace X is an invariant subspace under T if and only if
[T]B has the block-triangular form

[T]B =
(

Ar1×r1 B
0 C

)

, in which case A =
[

T/X

]

BX
. (4.9.7)

• The subspaces X ,Y, . . . ,Z are all invariant under T if and only if
[T]B has the block-diagonal form

[T]B =

⎛

⎜

⎜

⎝

Ar1×r1 0 · · · 0
0 Br2×r2 · · · 0
...

...
. . .

...
0 0 · · · Crk×rk

⎞

⎟

⎟

⎠

, (4.9.8)

in which case

A =
[

T/X

]

Bx

, B =
[

T/Y

]

By

, . . . , C =
[

T/Z

]

Bz

.

An important corollary concerns the special case in which the linear operator
T is in fact an n × n matrix and T(v) = Tv is a matrix–vector multiplication.
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Triangular and Diagonal Block Forms
When T is an n × n matrix, the following two statements are true.

• Q is a nonsingular matrix such that

Q−1TQ =
(

Ar×r Br×q

0 Cq×q

)

(4.9.9)

if and only if the first r columns in Q span an invariant subspace
under T.

• Q is a nonsingular matrix such that

Q−1TQ =

⎛

⎜

⎜

⎝

Ar1×r1 0 · · · 0
0 Br2×r2 · · · 0
...

...
. . .

...
0 0 · · · Crk×rk

⎞

⎟

⎟

⎠

(4.9.10)

if and only if Q =
(

Q1

∣

∣Q2

∣

∣ · · ·
∣

∣Qk

)

in which Qi is n × ri, and
the columns of each Qi span an invariant subspace under T.

Proof. We know from Example 4.8.3 that if B = {q1,q2, . . . ,qn} is a basis for
ℜn, and if Q =

(

q1

∣

∣q2

∣

∣ · · ·
∣

∣qn

)

is the matrix containing the vectors from B
as its columns, then [T]B = Q−1TQ. Statements (4.9.9) and (4.9.10) are now
direct consequences of statements (4.9.7) and (4.9.8), respectively.

Example 4.9.2
Problem: For

T =

⎛

⎜

⎝

−1 −1 −1 −1
0 −5 −16 −22
0 3 10 14
4 8 12 14

⎞

⎟

⎠
, q1 =

⎛

⎜

⎝

2
−1

0
0

⎞

⎟

⎠
, and q2 =

⎛

⎜

⎝

−1
2

−1
0

⎞

⎟

⎠
,

verify that X = span {q1,q2} is an invariant subspace under T, and then find
a nonsingular matrix Q such that Q−1TQ has the block-triangular form

Q−1TQ =

⎛

⎜

⎜

⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞

⎟

⎟

⎠

.
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Solution: X is invariant because Tq1 = q1+3q2 and Tq2 = 2q1+4q2 insure
that for all α and β, the images

T(αq1 + βq2) = (α + 2β)q1 + (3α + 4β)q2

lie in X . The desired matrix Q is constructed by extending {q1,q2} to a basis
B = {q1,q2,q3,q4} for ℜ4. If the extension technique described in Solution 2
of Example 4.4.5 is used, then

q3 =

⎛

⎜

⎝

1
0
0
0

⎞

⎟

⎠
and q4 =

⎛

⎜

⎝

0
0
0
1

⎞

⎟

⎠
,

and

Q =
(

q1

∣

∣ q2

∣

∣ q3

∣

∣ q4

)

=

⎛

⎜

⎝

2 −1 1 0
−1 2 0 0

0 −1 0 0
0 0 0 1

⎞

⎟

⎠
.

Since the first two columns of Q span a space that is invariant under T, it
follows from (4.9.9) that Q−1TQ must be in block-triangular form. This is easy
to verify by computing

Q−1 =

⎛

⎜

⎝

0 −1 −2 0
0 0 −1 0
1 2 3 0
0 0 0 1

⎞

⎟

⎠
and Q−1TQ =

⎛

⎜

⎜

⎝

1 2 0 −6
3 4 0 −14

0 0 −1 −3
0 0 4 14

⎞

⎟

⎟

⎠

.

In passing, notice that the upper-left-hand block is
[

T/X

]

{q1,q2}
=
(

1 2
3 4

)

.

Example 4.9.3
Consider again the matrices of Example 4.9.2:

T =

⎛

⎜

⎝

−1 −1 −1 −1
0 −5 −16 −22
0 3 10 14
4 8 12 14

⎞

⎟

⎠
, q1 =

⎛

⎜

⎝

2
−1

0
0

⎞

⎟

⎠
, and q2 =

⎛

⎜

⎝

−1
2

−1
0

⎞

⎟

⎠
.

There are infinitely many extensions of {q1,q2} to a basis B = {q1,q2,q3,q4}
for ℜ4 —the extension used in Example 4.9.2 is only one possibility. Another
extension is

q3 =

⎛

⎜

⎝

0
−1

2
−1

⎞

⎟

⎠
and q4 =

⎛

⎜

⎝

0
0

−1
1

⎞

⎟

⎠
.
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This extension might be preferred over that of Example 4.9.2 because the spaces
X = span {q1,q2} and Y = span {q3,q4} are both invariant under T, and
therefore it follows from (4.9.10) that Q−1TQ is block diagonal. Indeed, it is
not difficult to verify that

Q−1TQ =

⎛

⎜

⎝

1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

⎞

⎟

⎠

⎛

⎜

⎝

−1 −1 −1 −1
0 −5 −16 −22
0 3 10 14
4 8 12 14

⎞

⎟

⎠

⎛

⎜

⎝

2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 1

⎞

⎟

⎠

=

⎛

⎜

⎜

⎝

1 2 0 0
3 4 0 0

0 0 5 6
0 0 7 8

⎞

⎟

⎟

⎠

.

Notice that the diagonal blocks must be the matrices of the restrictions in the
sense that

(

1 2
3 4

)

=
[

T/X

]

{q1,q2}
and

(

5 6
7 8

)

=
[

T/Y

]

{q3,q4}
.

Example 4.9.4
Problem: Find all subspaces of ℜ2 that are invariant under

A =
(

0 1
−2 3

)

.

Solution: The trivial subspace {0} is the only zero-dimensional invariant sub-
space, and the entire space ℜ2 is the only two-dimensional invariant subspace.
The real problem is to find all one-dimensional invariant subspaces. If M is a
one-dimensional subspace spanned by x ̸= 0 such that A(M) ⊆ M, then

Ax ∈ M =⇒ there is a scalar λ such that Ax = λx =⇒ (A − λI)x = 0.

In other words, M ⊆ N (A − λI) . Since dimM = 1, it must be the case that
N (A − λI) ̸= {0}, and consequently λ must be a scalar such that (A − λI) is
a singular matrix. Row operations produce

A − λI =
(

−λ 1
−2 3 − λ

)

−→
(

−2 3 − λ
−λ 1

)

−→
(

−2 3 − λ
0 1 + (λ2 − 3λ)/2

)

,

and it is clear that (A − λI) is singular if and only if 1+ (λ2 −3λ)/2 = 0 —i.e.,
if and only if λ is a root of

λ2 − 3λ + 2 = 0.
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Thus λ = 1 and λ = 2, and straightforward computation yields the two one-
dimensional invariant subspaces

M1 = N (A − I) = span

{(

1
1

)}

and M2 = N (A − 2I) = span

{(

1
2

)}

.

In passing, notice that B =
{(

1
1

)

,
(

1
2

)}

is a basis for ℜ2, and

[A]B = Q−1AQ =
(

1 0
0 2

)

, where Q =
(

1 1
1 2

)

.

In general, scalars λ for which (A − λI) is singular are called the eigenvalues
of A, and the nonzero vectors in N (A − λI) are known as the associated
eigenvectors for A. As this example indicates, eigenvalues and eigenvectors
are of fundamental importance in identifying invariant subspaces and reducing
matrices by means of similarity transformations. Eigenvalues and eigenvectors
are discussed at length in Chapter 7.

Exercises for section 4.9

4.9.1. Let T be an arbitrary linear operator on a vector space V.
(a) Is the trivial subspace {0} invariant under T?
(b) Is the entire space V invariant under T?

4.9.2. Describe all of the subspaces that are invariant under the identity oper-
ator I on a space V.

4.9.3. Let T be the linear operator on ℜ4 defined by

T(x1, x2, x3, x4) = (x1 + x2 + 2x3 − x4, x2 + x4, 2x3 − x4, x3 + x4),

and let X = span {e1, e2} be the subspace that is spanned by the first
two unit vectors in ℜ4.

(a) Explain why X is invariant under T.
(b) Determine

[

T/X
]

{e1,e2}
.

(c) Describe the structure of [T]B, where B is any basis obtained
from an extension of {e1, e2} .
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4.9.4. Let T and Q be the matrices

T =

⎛

⎜

⎝

−2 −1 −5 −2
−9 0 −8 −2

2 3 11 5
3 −5 −13 −7

⎞

⎟

⎠
and Q =

⎛

⎜

⎝

1 0 0 −1
1 1 3 −4

−2 0 1 0
3 −1 −4 3

⎞

⎟

⎠
.

(a) Explain why the columns of Q are a basis for ℜ4.
(b) Verify that X = span {Q∗1,Q∗2} and Y = span {Q∗3,Q∗4}

are each invariant subspaces under T.
(c) Describe the structure of Q−1TQ without doing any compu-

tation.
(d) Now compute the product Q−1TQ to determine

[

T/X

]

{Q∗1,Q∗2}
and

[

T/Y

]

{Q∗3,Q∗4}
.

4.9.5. Let T be a linear operator on a space V, and suppose that

B = {u1, . . . ,ur, w1, . . . ,wq}

is a basis for V such that [T]B has the block-diagonal form

[T]B =
(

Ar×r 0
0 Cq×q

)

.

Explain why U = span {u1, . . . ,ur} and W = span {w1, . . . ,wq} must
each be invariant subspaces under T.

4.9.6. If Tn×n and Pn×n are matrices such that

P−1TP =
(

Ar×r 0
0 Cq×q

)

,

explain why

U = span {P∗1, . . . ,P∗r} and W = span {P∗r+1, . . . ,P∗n}

are each invariant subspaces under T.

4.9.7. If A is an n × n matrix and λ is a scalar such that (A − λI) is
singular (i.e., λ is an eigenvalue), explain why the associated space of
eigenvectors N (A − λI) is an invariant subspace under A.

4.9.8. Consider the matrix A =
(

−9 4
−24 11

)

.

(a) Determine the eigenvalues of A.
(b) Identify all subspaces of ℜ2 that are invariant under A.
(c) Find a nonsingular matrix Q such that Q−1AQ is a diagonal

matrix.
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(b) Let B = X ∪ Y = {b1,b2, . . . ,bn}. For j = 1, 2, . . . , r, the jth column
of [E]B is [E(bj)]B = [E(xj)]B = ej . For j = r + 1, r + 2, . . . , n, [E(bj)]B =
[E(yj−r)]B = [0]B = 0.

(c) Suppose that B and C are two idempotent matrices of rank r. If you
regard them as linear operators on ℜn, then, with respect to the standard basis,
[B]S = B and [C]S = C. You know from part (b) that there are bases U and

V such that [B]U = [C]V =
(

Ir 0
0 0

)
= P. This implies that B ≃ P, and

P ≃ C. From Exercise 4.8.2, it follows that B ≃ C.

(d) It follows from part (c) that F ≃ P =
(

Ir 0
0 0

)
. Since trace and rank are

similarity invariants, trace (F) = trace (P) = r = rank (P) = rank (F).

Solutions for exercises in section 4. 9

4.9.1. (a) Yes, because T(0) = 0. (b) Yes, because x ∈ V =⇒ T(x) ∈ V.
4.9.2. Every subspace of V is invariant under I.
4.9.3. (a) X is invariant because x ∈ X ⇐⇒ x = (α, β, 0, 0) for α, β ∈ ℜ, so

T(x) = T(α, β, 0, 0) = (α + β, β, 0, 0) ∈ X .

(b)
[
T/X

]

{e1,e2}
=
(

1 1
0 1

)

(c) [T]B =

⎛

⎜⎜⎝

1 1 ∗ ∗
0 1 ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞

⎟⎟⎠

4.9.4. (a) Q is nonsingular. (b) X is invariant because

T(α1Q∗1 + α2Q∗2) = α1

⎛

⎜⎝

1
1
−2

3

⎞

⎟⎠+ α2

⎛

⎜⎝

1
2
−2

2

⎞

⎟⎠ = α1Q∗1 + α2(Q∗1 + Q∗2)

= (α1 + α2)Q∗1 + α2Q∗2 ∈ span {Q∗1, Q∗2} .

Y is invariant because

T(α3Q∗3 + α4Q∗4) = α3

⎛

⎜⎝

0
0
0
0

⎞

⎟⎠+ α4

⎛

⎜⎝

0
3
1
−4

⎞

⎟⎠ = α4Q∗3 ∈ span {Q∗3, Q∗4} .

(c) According to (4.9.10), Q−1TQ should be block diagonal.
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(d) Q−1TQ =

⎛

⎜⎜⎝

1 1 0 0
0 1 0 0

0 0 0 1
0 0 0 0

⎞

⎟⎟⎠ =

⎛

⎝

[
T/X

]

{Q∗1,Q∗2}
0

0
[
T/Y

]

{Q∗3,Q∗4}

⎞

⎠

4.9.5. If A = [αij ] and C = [γij ], then

T(uj) =
r∑

i=1

αijui ∈ U and T(wj) =
q∑

i=1

γijwi ∈W.

4.9.6. If S is the standard basis for ℜn×1, and if B is the basis consisting of the
columns of P, then

[T]B = P−1[T]SP = P−1TP =
(

A 0
0 C

)
.

(Recall Example 4.8.3.) The desired conclusion now follows from the result of
Exercise 4.9.5.

4.9.7. x ∈ N (A−λI) =⇒ (A−λI)x = 0 =⇒ Ax = λx ∈ N (A−λI)
4.9.8. (a) (A−λI) is singular when λ =−1 and λ = 3.

(b) There are four invariant subspaces—the trivial space {0}, the entire space
ℜ2, and the two one-dimensional spaces

N (A + I) = span

{(
1
2

)}
and N (A−3I) = span

{(
1
3

)}
.

(c) Q =
(

1 1
2 3

)


