
CHAPTER 5

Norms,
Inner Products,

and Orthogonality

5.1 VECTOR NORMS

A significant portion of linear algebra is in fact geometric in nature because
much of the subject grew out of the need to generalize the basic geometry of
ℜ2 and ℜ3 to nonvisual higher-dimensional spaces. The usual approach is to
coordinatize geometric concepts in ℜ2 and ℜ3, and then extend statements
concerning ordered pairs and triples to ordered n-tuples in ℜn and Cn.

For example, the length of a vector u ∈ ℜ2 or v ∈ ℜ3 is obtained from
the Pythagorean theorem by computing the length of the hypotenuse of a right
triangle as shown in Figure 5.1.1.
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This measure of length,

∥u∥ =
√

x2 + y2 and ∥v∥ =
√

x2 + y2 + z2,
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is called the euclidean norm in ℜ2 and ℜ3, and there is an obvious extension
to higher dimensions.

Euclidean Vector Norm
For a vector xn×1, the euclidean norm of x is defined to be

• ∥x∥ =
( ∑n

i=1 x2
i

)1/2
=

√
xT x whenever x ∈ ℜn×1,

• ∥x∥ =
( ∑n

i=1 |xi|2
)1/2

=
√

x∗x whenever x ∈ Cn×1.

For example, if u =

⎛

⎜⎝

0
−1

2
−2

4

⎞

⎟⎠ and v =

⎛

⎜⎝

i
2

1 − i
0

1 + i

⎞

⎟⎠, then

∥u∥ =
√∑

u2
i =

√
uT u =

√
0 + 1 + 4 + 4 + 16 = 5,

∥v∥ =
√∑

|vi|2 =
√

v∗v =
√

1 + 4 + 2 + 0 + 2 = 3.

There are several points to note. 33

• The complex version of ∥x∥ includes the real version as a special case because
|z|2 = z2 whenever z is a real number. Recall that if z = a + ib, then
z̄ = a− ib, and the magnitude of z is |z| =

√
z̄z =

√
a2 + b2. The fact that

|z|2 = z̄z = a2 + b2 is a real number insures that ∥x∥ is real even if x has
some complex components.

• The definition of euclidean norm guarantees that for all scalars α,

∥x∥ ≥ 0, ∥x∥ = 0 ⇐⇒ x = 0, and ∥αx∥ = |α| ∥x∥ . (5.1.1)

• Given a vector x ̸= 0, it’s frequently convenient to have another vector
that points in the same direction as x (i.e., is a positive multiple of x) but
has unit length. To construct such a vector, we normalize x by setting
u = x/ ∥x∥. From (5.1.1), it’s easy to see that

∥u∥ =
∥∥∥∥

x
∥x∥

∥∥∥∥ =
1

∥x∥ ∥x∥ = 1. (5.1.2)

33
By convention, column vectors are used throughout this chapter. But there is nothing special
about columns because, with the appropriate interpretation, all statements concerning columns
will also hold for rows.
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• The distance between vectors in ℜ3 can be visualized with the aid of the
parallelogram law as shown in Figure 5.1.2, so for vectors in ℜn and Cn,
the distance between u and v is naturally defined to be ∥u − v∥ .
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Figure 5.1.2

Standard Inner Product
The scalar terms defined by

xT y =
n∑

i=1

xiyi ∈ ℜ and x∗y =
n∑

i=1

x̄iyi ∈ C

are called the standard inner products for ℜn and Cn, respectively.

The Cauchy–Bunyakovskii–Schwarz (CBS) inequality 34 is one of the most
important inequalities in mathematics. It relates inner product to norm.

34
The Cauchy–Bunyakovskii–Schwarz inequality is named in honor of the three men who played
a role in its development. The basic inequality for real numbers is attributed to Cauchy in 1821,
whereas Schwarz and Bunyakovskii contributed by later formulating useful generalizations of
the inequality involving integrals of functions.

Augustin-Louis Cauchy (1789–1857) was a French mathematician who is generally regarded
as being the founder of mathematical analysis—including the theory of complex functions.
Although deeply embroiled in political turmoil for much of his life (he was a partisan of the
Bourbons), Cauchy emerged as one of the most prolific mathematicians of all time. He authored
at least 789 mathematical papers, and his collected works fill 27 volumes—this is on a par with
Cayley and second only to Euler. It is said that more theorems, concepts, and methods bear
Cauchy’s name than any other mathematician.

Victor Bunyakovskii (1804–1889) was a Russian professor of mathematics at St. Petersburg, and
in 1859 he extended Cauchy’s inequality for discrete sums to integrals of continuous functions.
His contribution was overlooked by western mathematicians for many years, and his name is
often omitted in classical texts that simply refer to the Cauchy–Schwarz inequality.

Hermann Amandus Schwarz (1843–1921) was a student and successor of the famous German
mathematician Karl Weierstrass at the University of Berlin. Schwarz independently generalized
Cauchy’s inequality just as Bunyakovskii had done earlier.
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Cauchy–Bunyakovskii–Schwarz (CBS) Inequality

|x∗y| ≤ ∥x∥ ∥y∥ for all x,y ∈ Cn×1. (5.1.3)

Equality holds if and only if y = αx for α = x∗y/x∗x.

Proof. Set α = x∗y/x∗x = x∗y/ ∥x∥2 (assume x ̸= 0 because there is nothing
to prove if x = 0) and observe that x∗(αx − y) = 0, so

0 ≤ ∥αx − y∥2 = (αx − y)∗(αx − y) = ᾱx∗(αx − y) − y∗(αx − y)

= −y∗(αx − y) = y∗y − αy∗x =
∥y∥2 ∥x∥2 − (x∗y) (y∗x)

∥x∥2 .
(5.1.4)

Since y∗x = x∗y, it follows that (x∗y) (y∗x) = |x∗y|2 , so

0 ≤ ∥y∥2 ∥x∥2 − |x∗y|2

∥x∥2 .

Now, 0 < ∥x∥2 implies 0 ≤ ∥y∥2 ∥x∥2 − |x∗y|2 , and thus the CBS inequality
is obtained. Establishing the conditions for equality is Exercise 5.1.9.

One reason that the CBS inequality is important is because it helps to
establish that the geometry in higher-dimensional spaces is consistent with the
geometry in the visual spaces ℜ2 and ℜ3. In particular, consider the situation
depicted in Figure 5.1.3.
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Figure 5.1.3

Imagine traveling from the origin to the point x and then moving from x to the
point x+y. Clearly, you have traveled a distance that is at least as great as the
direct distance from the origin to x+y along the diagonal of the parallelogram.
In other words, it’s visually evident that ∥x + y∥ ≤ ∥x∥+∥y∥ . This observation
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is known as the triangle inequality. In higher-dimensional spaces we do not
have the luxury of visualizing the geometry with our eyes, and the question of
whether or not the triangle inequality remains valid has no obvious answer. The
CBS inequality is precisely what is required to prove that, in this respect, the
geometry of higher dimensions is no different than that of the visual spaces.

Triangle Inequality

∥x + y∥ ≤ ∥x∥ + ∥y∥ for every x, y ∈ Cn.

Proof. Consider x and y to be column vectors, and write

∥x + y∥2 = (x + y)∗(x + y) = x∗x + x∗y + y∗x + y∗y

= ∥x∥2 + x∗y + y∗x + ∥y∥2 .
(5.1.5)

Recall that if z = a + ib, then z + z̄ = 2a = 2 Re (z) and |z|2 = a2 + b2 ≥ a2,
so that |z| ≥ Re (z) . Using the fact that y∗x = x∗y together with the CBS
inequality yields

x∗y + y∗x = 2 Re (x∗y) ≤ 2 |x∗y| ≤ 2 ∥x∥ ∥y∥ .

Consequently, we may infer from (5.1.5) that

∥x + y∥2 ≤ ∥x∥2 + 2 ∥x∥ ∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2 .

It’s not difficult to see that the triangle inequality can be extended to any
number of vectors in the sense that

∥

∥

∑

i xi

∥

∥ ≤
∑

i ∥xi∥ . Furthermore, it follows
as a corollary that for real or complex numbers,

∣

∣

∑

i αi

∣

∣ ≤
∑

i |αi| (the triangle
inequality for scalars).

Example 5.1.1
Backward Triangle Inequality. The triangle inequality produces an upper
bound for a sum, but it also yields the following lower bound for a difference:

∣

∣ ∥x∥ − ∥y∥
∣

∣ ≤ ∥x − y∥ . (5.1.6)

This is a consequence of the triangle inequality because

∥x∥ = ∥x − y + y∥ ≤ ∥x − y∥ + ∥y∥ =⇒ ∥x∥ − ∥y∥ ≤ ∥x − y∥
and

∥y∥ = ∥x − y − x∥ ≤ ∥x − y∥ + ∥x∥ =⇒ −(∥x∥ − ∥y∥) ≤ ∥x − y∥ .
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There are notions of length other than the euclidean measure. For example,
urban dwellers navigate on a grid of city blocks with one-way streets, so they are
prone to measure distances in the city not as the crow flies but rather in terms
of lengths on a directed grid. For example, instead of than saying that “it’s a
one-half mile straight-line (euclidean) trip from here to there,” they are more
apt to describe the length of the trip by saying, “it’s two blocks north on Dan
Allen Drive, four blocks west on Hillsborough Street, and five blocks south on
Gorman Street.” In other words, the length of the trip is 2 + |− 4|+ |− 5| = 11
blocks—absolute value is used to insure that southerly and westerly movement
does not cancel the effect of northerly and easterly movement, respectively. This
“grid norm” is better known as the 1-norm because it is a special case of a more
general class of norms defined below.

p-Norms
For p ≥ 1, the p-norm of x ∈ Cn is defined as ∥x∥p = (

∑n
i=1 |xi|p)

1/p
.

It can be proven that the following properties of the euclidean norm are in
fact valid for all p-norms:

∥x∥p ≥ 0 and ∥x∥p = 0⇐⇒ x = 0,

∥αx∥p = |α| ∥x∥p for all scalars α,

∥x + y∥p ≤ ∥x∥p + ∥y∥p (see Exercise 5.1.13).

(5.1.7)

The generalized version of the CBS inequality (5.1.3) for p-norms is Hölder’s
inequality (developed in Exercise 5.1.12), which states that if p > 1 and q > 1
are real numbers such that 1/p + 1/q = 1, then

|x∗y| ≤ ∥x∥p ∥y∥q . (5.1.8)

In practice, only three of the p-norms are used, and they are

∥x∥1 =
n∑

i=1

|xi| (the grid norm), ∥x∥2 =

(
n∑

i=1

|xi|2
)1/2

(the euclidean norm),

and

∥x∥∞ = lim
p→∞

∥x∥p = lim
p→∞

(
n∑

i=1

|xi|p
)1/p

= max
i

|xi| (the max norm).

For example, if x = (3, 4−3i, 1), then ∥x∥1 = 9, ∥x∥2 =
√

35, and ∥x∥∞ = 5.



5.1 Vector Norms 275

To see that limp→∞ ∥x∥p = maxi |xi| , proceed as follows. Relabel the en-
tries of x by setting x̃1 = maxi |xi| , and if there are other entries with this
same maximal magnitude, label them x̃2, . . . , x̃k. Label any remaining coordi-
nates as x̃k+1 · · · x̃n. Consequently, |x̃i/x̃1| < 1 for i = k + 1, . . . , n, so, as
p → ∞,

∥x∥p =

(
n∑

i=1

|x̃i|p
)1/p

= |x̃1|
(

k +
∣∣∣∣
x̃k+1

x̃1

∣∣∣∣
p

+ · · · +
∣∣∣∣
x̃n

x̃1

∣∣∣∣
p)1/p

→ |x̃1| .

Example 5.1.2
To get a feel for the 1-, 2-, and ∞-norms, it helps to know the shapes and relative
sizes of the unit p-spheres Sp = {x | ∥x∥p = 1} for p = 1, 2, ∞. As illustrated
in Figure 5.1.4, the unit 1-, 2-, and ∞-spheres in ℜ3 are an octahedron, a ball,
and a cube, respectively, and it’s visually evident that S1 fits inside S2, which
in turn fits inside S∞. This means that ∥x∥1 ≥ ∥x∥2 ≥ ∥x∥∞ for all x ∈ ℜ3.
In general, this is true in ℜn (Exercise 5.1.8).

S1 S2 S∞

Figure 5.1.4

Because the p-norms are defined in terms of coordinates, their use is limited
to coordinate spaces. But it’s desirable to have a general notion of norm that
works for all vector spaces. In other words, we need a coordinate-free definition
of norm that includes the standard p-norms as a special case. Since all of the p-
norms satisfy the properties (5.1.7), it’s natural to use these properties to extend
the concept of norm to general vector spaces.

General Vector Norms
A norm for a real or complex vector space V is a function ∥⋆∥ mapping
V into ℜ that satisfies the following conditions.

∥x∥ ≥ 0 and ∥x∥ = 0 ⇐⇒ x = 0,

∥αx∥ = |α| ∥x∥ for all scalars α,

∥x + y∥ ≤ ∥x∥ + ∥y∥ .

(5.1.9)
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Example 5.1.3
Equivalent Norms. Vector norms are basic tools for defining and analyzing
limiting behavior in vector spaces V. A sequence {xk} ⊂V is said to converge
to x (write xk → x ) if ∥xk − x∥ → 0. This depends on the choice of the norm,
so, ostensibly, we might have xk → x with one norm but not with another.
Fortunately, this is impossible in finite-dimensional spaces because all norms are
equivalent in the following sense.

Problem: For each pair of norms, ∥⋆∥a , ∥⋆∥b , on an n-dimensional space V,
exhibit positive constants α and β (depending only on the norms) such that

α ≤
∥x∥a

∥x∥b

≤ β for all nonzero vectors in V. (5.1.10)

Solution: For Sb = {y | ∥y∥b = 1}, let µ = miny∈Sb ∥y∥a > 0,
35 and write

x
∥x∥b

∈ Sb =⇒ ∥x∥a = ∥x∥b

∥∥∥∥
x
∥x∥b

∥∥∥∥
a

≥ ∥x∥b min
y∈Sb

∥y∥a = ∥x∥b µ.

The same argument shows there is a ν > 0 such that ∥x∥b ≥ ν ∥x∥a , so
(5.1.10) is produced with α = µ and β = 1/ν. Note that (5.1.10) insures that
∥xk − x∥a → 0 if and only if ∥xk − x∥b → 0. Specific values for α and β are
given in Exercises 5.1.8 and 5.12.3.

Exercises for section 5.1

5.1.1. Find the 1-, 2-, and ∞-norms of x =

⎛

⎝
2
1

−4
−2

⎞

⎠ and x =

⎛

⎝
1 + i
1 − i

1
4i

⎞

⎠.

5.1.2. Consider the euclidean norm with u =

⎛

⎝
2
1

−4
−2

⎞

⎠ and v =

⎛

⎝
1

−1
1

−1

⎞

⎠.

(a) Determine the distance between u and v.
(b) Verify that the triangle inequality holds for u and v.
(c) Verify that the CBS inequality holds for u and v.

5.1.3. Show that (α1 + α2 + · · · + αn)2 ≤ n
(
α2

1 + α2
2 + · · · + α2

n

)
for αi ∈ ℜ.

35
An important theorem from analysis states that a continuous function mapping a closed and
bounded subset K ⊂ V into ℜ attains a minimum and maximum value at points in K.
Unit spheres in finite-dimensional spaces are closed and bounded, and every norm on V is
continuous (Exercise 5.1.7), so this minimum is guaranteed to exist.
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5.1.4. (a) Using the euclidean norm, describe the solid ball in ℜn centered
at the origin with unit radius. (b) Describe a solid ball centered at
the point c = ( ξ1 ξ2 · · · ξn ) with radius ρ.

5.1.5. If x,y ∈ ℜn such that ∥x − y∥2 = ∥x + y∥2 , what is xT y?

5.1.6. Explain why ∥x − y∥ = ∥y − x∥ is true for all norms.

5.1.7. For every vector norm on Cn, prove that ∥v∥ depends continuously on
the components of v in the sense that for each ϵ > 0, there corresponds
a δ > 0 such that

∣∣ ∥x∥− ∥y∥
∣∣ < ϵ whenever |xi − yi| < δ for each i.

5.1.8. (a) For x ∈ Cn×1, explain why ∥x∥1 ≥ ∥x∥2 ≥ ∥x∥∞ .

(b) For x ∈ Cn×1, show that ∥x∥i ≤ α ∥x∥j , where α is the (i, j)-
entry in the following matrix. (See Exercise 5.12.3 for a similar
statement regarding matrix norms.)

⎛

⎝

1 2 ∞
1 ∗

√
n n

2 1 ∗
√

n
∞ 1 1 ∗

⎞

⎠.

5.1.9. For x,y ∈ Cn, x ̸= 0, explain why equality holds in the CBS inequality
if and only if y = αx, where α = x∗y/x∗x. Hint: Use (5.1.4).

5.1.10. For nonzero vectors x,y ∈ Cn with the euclidean norm, prove that
equality holds in the triangle inequality if and only if y = αx, where α
is real and positive. Hint: Make use of Exercise 5.1.9.

5.1.11. Use Hölder’s inequality (5.1.8) to prove that if the components of
x ∈ ℜn×1 sum to zero (i.e., xT e = 0 for eT = (1, 1, . . . , 1) ), then

|xT y| ≤ ∥x∥1

(
ymax − ymin

2

)
for all y ∈ ℜn×1.

Note: For “zero sum” vectors x, this is at least as sharp and usually
it’s sharper than (5.1.8) because (ymax − ymin)/2 ≤ maxi |yi| = ∥y∥∞.
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5.1.12. The classical form of Hölder’s inequality
36 states that if p > 1 and

q > 1 are real numbers such that 1/p + 1/q = 1, then

n
∑

i=1

|xiyi| ≤
(

n
∑

i=1

|xi|p
)1/p( n

∑

i=1

|yi|q
)1/q

.

Derive this inequality by executing the following steps:
(a) By considering the function f(t) = (1 − λ) + λt − tλ for 0 < λ < 1,

establish the inequality

αλβ1−λ ≤ λα + (1 − λ)β

for nonnegative real numbers α and β.
(b) Let x̂ = x/ ∥x∥p and ŷ = y/ ∥y∥q , and apply the inequality of part (a)

to obtain
n
∑

i=1

|x̂iŷi| ≤
1
p

n
∑

i=1

|x̂i|p +
1
q

n
∑

i=1

|ŷi|q = 1.

(c) Deduce the classical form of Hölder’s inequality, and then explain why
this means that

|x∗y| ≤ ∥x∥p ∥y∥q .

5.1.13. The triangle inequality ∥x + y∥p ≤ ∥x∥p + ∥y∥p for a general p-norm
is really the classical Minkowski inequality,

37 which states that for
p ≥ 1,

(

n
∑

i=1

|xi + yi|p
)1/p

≤
(

n
∑

i=1

|xi|p
)1/p

+

(

n
∑

i=1

|yi|p
)1/p

.

Derive Minkowski’s inequality. Hint: For p > 1, let q be the number
such that 1/q = 1 − 1/p. Verify that for scalars α and β,

|α + β|p = |α + β| |α + β|p/q ≤ |α| |α + β|p/q + |β| |α + β|p/q,

and make use of Hölder’s inequality in Exercise 5.1.12.

36
Ludwig Otto Hölder (1859–1937) was a German mathematician who studied at Göttingen and
lived in Leipzig. Although he made several contributions to analysis as well as algebra, he is
primarily known for the development of the inequality that now bears his name.

37
Hermann Minkowski (1864–1909) was born in Russia, but spent most of his life in Germany
as a mathematician and professor at Königsberg and Göttingen. In addition to the inequality
that now bears his name, he is known for providing a mathematical basis for the special theory
of relativity. He died suddenly from a ruptured appendix at the age of 44.
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Solutions for exercises in section 5. 1

5.1.1. (a) ∥x∥1 = 9, ∥x∥2 = 5, ∥x∥∞ = 4

(b) ∥x∥1 = 5 + 2
√

2, ∥x∥2 =
√

21, ∥x∥∞ = 4
5.1.2. (a) ∥u− v∥ =

√
31 (b) ∥u + v∥ =

√
27 ≤ 7 = ∥u∥+ ∥v∥

(c) |uT v| = 1 ≤ 10 = ∥u∥ ∥v∥

5.1.3. Use the CBS inequality with x =

⎛

⎜⎜⎝

α1

α2
...

αn

⎞

⎟⎟⎠ and y =

⎛

⎜⎜⎝

1
1
...
1

⎞

⎟⎟⎠ .

5.1.4. (a)
{
x ∈ ℜn

∣∣ ∥x∥2 ≤ 1
}

(b)
{
x ∈ ℜn

∣∣ ∥x− c∥2 ≤ ρ
}

5.1.5. ∥x− y∥2 = ∥x + y∥2 =⇒ −2xT y = 2xT y =⇒ xT y = 0.
5.1.6. ∥x− y∥ = ∥(−1)(y − x)∥ = |(−1)| ∥y − x∥ = ∥y − x∥
5.1.7. x−y =

∑n
i=1(xi−yi)ei =⇒ ∥x− y∥ ≤

∑n
i=1 |xi−yi| ∥ei∥ ≤ ν

∑n
i=1 |xi−yi|,

where ν = maxi ∥ei∥ . For each ϵ > 0, set δ = ϵ/nν. If |xi − yi| < δ for each
i, then, using (5.1.6),

∣∣ ∥x∥ − ∥y∥
∣∣ ≤ ∥x− y∥ < νnδ = ϵ.

5.1.8. To show that ∥x∥1 ≤
√

n ∥x∥2 , apply the CBS inequality to the standard inner
product of a vector of all 1’s with a vector whose components are the |xi| ’s.

5.1.9. If y = αx, then |x∗y| = |α| ∥x∥2 = ∥x∥ ∥y∥ . Conversely, if |x∗y| = ∥x∥ ∥y∥ ,
then (5.1.4) implies that ∥αx− y∥ = 0, and hence αx− y = 0 —recall (5.1.1).

5.1.10. If y = αx for α > 0, then ∥x + y∥ = ∥(1 + α)x∥ = (1 + α) ∥x∥ = ∥x∥+ ∥y∥ .
Conversely, ∥x + y∥ = ∥x∥+ ∥y∥ =⇒ (∥x∥+ ∥y∥)2 = ∥x + y∥2 =⇒

∥x∥2 + 2 ∥x∥ ∥y∥+ ∥y∥2 = (x∗+ y∗) (x + y)
= x∗x + x∗y + y∗x + y∗y

= ∥x∥2 + 2 Re(x∗y) + ∥y∥2 ,

and hence ∥x∥ ∥y∥ = Re (x∗y) . But it’s always true that Re (x∗y) ≤
∣∣x∗y

∣∣,
so the CBS inequality yields

∥x∥ ∥y∥ = Re (x∗y) ≤
∣∣x∗y

∣∣ ≤ ∥x∥ ∥y∥ .

In other words,
∣∣x∗y

∣∣ = ∥x∥ ∥y∥ . We know from Exercise 5.1.9 that equality
in the CBS inequality implies y = αx, where α = x∗y/x∗x. We now need to
show that this α is real and positive. Using y = αx in the equality ∥x + y∥ =
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∥x∥+ ∥y∥ produces |1 + α| = 1 + |α|, or |1 + α|2 = (1 + |α|)2 . Expanding this
yields

(1 + ᾱ)(1 + α) = 1 + 2|α| + |α|2

=⇒ 1 + 2 Re(α) + ᾱα = 1 + 2|α| + ᾱα

=⇒ Re(α) = |α|,

which implies that α must be real. Furthermore, α = Re (α) = |α| ≥ 0. Since
y = αx and y ̸= 0, it follows that α ̸= 0, and therefore α > 0.

5.1.11. This is a consequence of Hölder’s inequality because

|xT y| = |xT (y − αe)| ≤ ∥x∥1 ∥y − αe∥∞

for all α, and minα ∥y − αe∥∞ = (ymax − ymin)/2 (with the minimum being
attained at α = (ymax + ymin)/2 ).

5.1.12. (a) It’s not difficult to see that f ′(t) < 0 for t < 1, and f ′(t) > 0 for t > 1,
so we can conclude that f(t) > f(1) = 0 for t ̸= 1. The desired inequality
follows by setting t = α/β.

(b) This inequality follows from the inequality of part (a) by setting

α = |x̂i|p, β = |ŷi|q, λ = 1/p, and (1− λ) = 1/q.

(c) Hölder’s inequality results from part (b) by setting x̂i = xi/ ∥x∥p and
ŷi = yi/ ∥y∥q . To obtain the “vector form” of the inequality, use the triangle
inequality for complex numbers to write

|x∗y| =

∣∣∣∣∣

n∑

i=1

xiyi

∣∣∣∣∣ ≤
n∑

i=1

|xi| |yi| =
n∑

i=1

|xiyi| ≤
(

n∑

i=1

|xi|p
)1/p( n∑

i=1

|yi|q
)1/q

= ∥x∥p ∥y∥q .

5.1.13. For p = 1, Minkowski’s inequality is a consequence of the triangle inequality
for scalars. The inequality in the hint follows from the fact that p = 1 + p/q
together with the scalar triangle inequality, and it implies that

n∑

i=1

|xi +yi|p =
n∑

i=1

|xi +yi| |xi +yi|p/q ≤
n∑

i=1

|xi| |xi +yi|p/q +
n∑

i=1

|yi| |xi +yi|p/q.

Application of Hölder’s inequality produces

n∑

i=1

|xi| |xi + yi|p/q ≤
(

n∑

i=1

|xi|p
)1/p( n∑

i=1

|xi + yi|p
)1/q

=

(
n∑

i=1

|xi|p
)1/p( n∑

i=1

|xi + yi|p
)(p−1)/p

= ∥x∥p ∥x + y∥p−1
p .
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Similarly,
n∑

i=1

|yi| |xi + yi|p/q ≤ ∥y∥p ∥x + y∥p−1
p , and therefore

∥x + y∥pp ≤
(
∥x∥p + ∥y∥p

)
∥x + y∥p−1

p =⇒ ∥x + y∥p ≤ ∥x∥p + ∥y∥p .

Solutions for exercises in section 5. 2

5.2.1. ∥A∥F =
[∑

i,j |aij |2
]1/2

= [trace (A∗A)]1/2 =
√

10,

∥B∥F =
√

3, and ∥C∥F =
√

9.
5.2.2. (a) ∥A∥1 = max absolute column sum = 4, and ∥A∥∞ = max absolute

row sum = 3. ∥A∥2 =
√

λmax, where λmax is the largest value of λ for which
AT A− λI is singular. Determine these λ ’s by row reduction.

AT A− λI =
(

2−−λ −4
−4 8− λ

)
−→

(
−4 8− λ

2− λ −4

)

−→
(
−4 8− λ
0 −4 + 2−λ

4 (8− λ)

)

This matrix is singular if and only if the second pivot is zero, so we must have
(2−λ)(8−λ)− 16 = 0 =⇒ λ2− 10λ = 0 =⇒ λ = 0, λ = 10, and therefore
∥A∥2 =

√
10.

(b) Use the same technique to get ∥B∥1 = ∥B∥2 = ∥B∥∞ = 1, and
(c) ∥C∥1 = ∥C∥∞ = 10 and ∥C∥2 = 9.

5.2.3. (a) ∥I∥ = max∥x∥=1 ∥Ix∥ = max∥x∥=1 ∥x∥ = 1.

(b) ∥In×n∥F =
[
trace

(
IT I
)]1/2 =

√
n.

5.2.4. Use the fact that trace (AB) = trace (BA) (recall Example 3.6.5) to write

∥A∥2F = trace (A∗A) = trace (AA∗) = ∥A∗∥2F .

5.2.5. (a) For x = 0, the statement is trivial. For x ̸= 0, we have ∥(x/ ∥x∥)∥ = 1,
so for any particular x0 ̸= 0,

∥A∥ = max
∥x∥=1

∥Ax∥ = max
x̸=0

∥∥∥∥A
x
∥x∥

∥∥∥∥ ≥
∥Ax0∥
∥x0∥

=⇒ ∥Ax0∥ ≤ ∥A∥ ∥x0∥ .

(b) Let x0 be a vector such that ∥x0∥ = 1 and

∥ABx0∥ = max
∥x∥=1

∥ABx∥ = ∥AB∥ .

Make use of the result of part (a) to write

∥AB∥ = ∥ABx0∥ ≤ ∥A∥ ∥Bx0∥ ≤ ∥A∥ ∥B∥ ∥x0∥ = ∥A∥ ∥B∥ .


