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5.11 ORTHOGONAL DECOMPOSITION

The orthogonal complement of a single vector x was defined on p. 322 to be the
set of all vectors orthogonal to x. Below is the natural extension of this idea.

Orthogonal Complement
For a subset M of an inner-product space V, the orthogonal com-
plement M⊥ (pronounced “M perp”) of M is defined to be the set
of all vectors in V that are orthogonal to every vector in M. That is,

M⊥ =
{
x ∈ V

∣∣ ⟨m x⟩ = 0 for all m ∈ M
}

.

For example, if M = {x} is a single vector in ℜ2, then, as illustrated in
Figure 5.11.1, M⊥ is the line through the origin that is perpendicular to x. If
M is a plane through the origin in ℜ3, then M⊥ is the line through the origin
that is perpendicular to the plane.

Figure 5.11.1

Notice that M⊥ is a subspace of V even if M is not a subspace because M⊥ is
closed with respect to vector addition and scalar multiplication (Exercise 5.11.4).
But if M is a subspace, then M and M⊥ decompose V as described below.

Orthogonal Complementary Subspaces
If M is a subspace of a finite-dimensional inner-product space V, then

V = M ⊕ M⊥. (5.11.1)

Furthermore, if N is a subspace such that V = M ⊕ N and N ⊥ M
(every vector in N is orthogonal to every vector in M ), then

N = M⊥. (5.11.2)
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Proof. Observe that M ∩ M⊥ = 0 because if x ∈ M and x ∈ M⊥, then
x must be orthogonal to itself, and ⟨x x⟩ = 0 implies x = 0. To prove that
M ⊕ M⊥ = V, suppose that BM and BM⊥ are orthonormal bases for M
and M⊥, respectively. Since M and M⊥ are disjoint, BM ∪ BM⊥ is an
orthonormal basis for some subspace S = M ⊕ M⊥ ⊆ V. If S ̸= V, then
the basis extension technique of Example 4.4.5 followed by the Gram–Schmidt
orthogonalization procedure of §5.5 yields a nonempty set of vectors E such that
BM ∪ BM⊥ ∪ E is an orthonormal basis for V. Consequently,

E ⊥ BM =⇒ E ⊥ M =⇒ E ⊆ M⊥ =⇒ E ⊆ span (BM⊥) .

But this is impossible because BM∪BM⊥∪E is linearly independent. Therefore,
E is the empty set, and thus V = M ⊕ M⊥. To prove statement (5.11.2),
note that N ⊥ M implies N ⊆ M⊥, and coupling this with the fact that
M ⊕ M⊥ = V = M ⊕ N together with (4.4.19) insures

dimN = dimV − dimM = dimM⊥.

Example 5.11.1
Problem: Let Um×m =

(
U1 |U2

)
be a partitioned orthogonal matrix. Explain

why R (U1) and R (U2) must be orthogonal complements of each other.

Solution: Statement (5.9.4) insures that ℜm = R (U1)⊕ R (U2), and we know
that R (U1) ⊥ R (U2) because the columns of U are an orthonormal set.
Therefore, (5.11.2) guarantees that R (U2) = R (U1)

⊥.

Perp Operation
If M is a subspace of an n-dimensional inner-product space, then the
following statements are true.
• dimM⊥ = n − dimM. (5.11.3)

• M⊥⊥
= M. (5.11.4)

Proof. Property (5.11.3) follows from the fact that M and M⊥ are comple-
mentary subspaces—recall (4.4.19). To prove (5.11.4), first show that M⊥⊥ ⊆
M. If x ∈ M⊥⊥

, then (5.11.1) implies x = m + n, where m ∈ M and
n ∈ M⊥, so

0 = ⟨n x⟩ = ⟨n m + n⟩ = ⟨n m⟩ + ⟨n n⟩ = ⟨n n⟩ =⇒ n = 0 =⇒ x ∈ M,

and thus M⊥⊥ ⊆ M. We know from (5.11.3) that dimM⊥ = n − dimM and
dimM⊥⊥

= n − dimM⊥, so dimM⊥⊥
= dimM. Therefore, (4.4.6) guarantees

that M⊥⊥
= M.
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We are now in a position to understand why the four fundamental subspaces
associated with a matrix A ∈ ℜm×n are indeed “fundamental.” First consider
R (A)⊥, and observe that for all y ∈ ℜn,

x ∈ R (A)⊥ ⇐⇒ ⟨Ay x⟩ = 0 ⇐⇒ yT AT x = 0
⇐⇒

〈
y AT x

〉
= 0 ⇐⇒ AT x = 0 (Exercise 5.3.2)

⇐⇒ x ∈ N
(
AT

)
.

Therefore, R (A)⊥ = N
(
AT

)
. Perping both sides of this equation and replac-

ing 56 A by AT produces R
(
AT

)
= N (A)⊥. Combining these observations

produces one of the fundamental theorems of linear algebra.

Orthogonal Decomposition Theorem
For every A ∈ ℜm×n,

R (A)⊥ = N
(
AT

)
and N (A)⊥ = R

(
AT

)
. (5.11.5)

In light of (5.11.1), this means that every matrix A ∈ ℜm×n produces
an orthogonal decomposition of ℜm and ℜn in the sense that

ℜm = R (A) ⊕ R (A)⊥ = R (A) ⊕ N
(
AT

)
, (5.11.6)

and
ℜn = N (A) ⊕ N (A)⊥ = N (A) ⊕ R

(
AT

)
. (5.11.7)

Theorems without hypotheses tend to be extreme in the sense that they
either say very little or they reveal a lot. The orthogonal decomposition theorem
has no hypothesis—it holds for all matrices—so, does it really say something
significant? Yes, it does, and here’s part of the reason why.

In addition to telling us how to decompose ℜm and ℜn in terms of the
four fundamental subspaces of A, the orthogonal decomposition theorem also
tells us how to decompose A itself into more basic components. Suppose that
rank (A) = r, and let

BR(A) = {u1,u2, . . . ,ur} and B
N(AT ) = {ur+1,ur+2, . . . ,um}

be orthonormal bases for R (A) and N
(
AT

)
, respectively, and let

B
R(AT ) = {v1,v2, . . . ,vr} and BN(A) = {vr+1,vr+2, . . . ,vn}

56
Here, as well as throughout the rest of this section, (⋆)T can be replaced by (⋆)∗ whenever
ℜm× n is replaced by Cm× n.
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be orthonormal bases for R
(
AT

)
and N (A), respectively. It follows that

BR(A) ∪ B
N(AT ) and B

R(AT ) ∪ BN(A) are orthonormal bases for ℜm and ℜn,

respectively, and hence

Um×m =
(
u1 |u2 | · · · |um

)
and Vn×n =

(
v1 |v2 | · · · |vn

)
(5.11.8)

are orthogonal matrices. Now consider the product R = UT AV, and notice
that rij = uT

i Avj . However, uT
i A = 0 for i = r + 1, . . . , m and Avj = 0 for

j = r + 1, . . . , n, so

R = UT AV =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

uT
1 Av1 · · · uT

1 Avr 0 · · · 0
...

. . .
...

...
...

uT
r Av1 · · · uT

r Avr 0 · · · 0
0 · · · 0 0 · · · 0
...

...
...

. . .
...

0 · · · 0 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.11.9)

In other words, A can be factored as

A = URVT = U
(

Cr×r 0
0 0

)
VT . (5.11.10)

Moreover, C is nonsingular because it is r × r and

rank (C) = rank

(
C 0
0 0

)
= rank

(
UT AV

)
= rank (A) = r.

For lack of a better name, we will refer to (5.11.10) as a URV factorization.
We have just observed that every set of orthonormal bases for the four

fundamental subspaces defines a URV factorization. The situation is also re-
versible in the sense that every URV factorization of A defines an orthonor-
mal basis for each fundamental subspace. Starting with orthogonal matrices
U =

(
U1 |U2

)
and V =

(
V1 |V2

)
together with a nonsingular matrix Cr×r

such that (5.11.10) holds, use the fact that right-hand multiplication by a non-
singular matrix does not alter the range (Exercise 4.5.12) to observe

R (A) = R (UR) = R (U1C |0) = R (U1C) = R (U1).

By (5.11.5) and Example 5.11.1, N
(
AT

)
= R (A)⊥ = R (U1)

⊥ = R (U2).
Similarly, left-hand multiplication by a nonsingular matrix does not change the
nullspace, so the second equation in (5.11.5) along with Example 5.11.1 yields

N (A) = N
(
RVT

)
= N

(
CVT

1

0

)
= N

(
CVT

1

)
= N

(
VT

1

)
= R (V1)

⊥= R (V2),

and R
(
AT

)
= N (A)⊥ = R (V2)

⊥ = R (V1). A summary is given below.
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URV Factorization
For each A ∈ ℜm×n of rank r, there are orthogonal matrices Um×m

and Vn×n and a nonsingular matrix Cr×r such that

A = URVT = U
(

Cr×r 0
0 0

)

m×n

VT . (5.11.11)

• The first r columns in U are an orthonormal basis for R (A).
• The last m − r columns of U are an orthonormal basis for N

(
AT

)
.

• The first r columns in V are an orthonormal basis for R
(
AT

)
.

• The last n − r columns of V are an orthonormal basis for N (A).
Each different collection of orthonormal bases for the four fundamental
subspaces of A produces a different URV factorization of A. In the
complex case, replace (⋆)T by (⋆)∗ and “orthogonal” by “unitary.”

Example 5.11.2
Problem: Explain how to make C lower triangular in (5.11.11).

Solution: Apply Householder (or Givens) reduction to produce an orthogonal
matrix Pm×m such that PA =

(
B
0

)
, where B is r × n of rank r. House-

holder (or Givens) reduction applied to BT results in an orthogonal matrix
Qn×n and a nonsingular upper-triangular matrix T such that

QBT =
(

Tr×r

0

)
=⇒ B =

(
TT |0

)
Q =⇒

(
B
0

)
=

(
TT 0
0 0

)
Q,

so A = PT
(

B
0

)
= PT

(
TT 0
0 0

)
Q is a URV factorization.

Note: C can in fact be made diagonal—see (p. 412).

Have you noticed the duality that has emerged concerning the use of fun-
damental subspaces of A to decompose ℜn (or Cn )? On one hand there is
the range-nullspace decomposition (p. 394), and on the other is the orthogo-
nal decomposition theorem (p. 405). Each produces a decomposition of A. The
range-nullspace decomposition of ℜn produces the core-nilpotent decomposition
of A (p. 397), and the orthogonal decomposition theorem produces the URV
factorization. In the next section, the URV factorization specializes to become
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the singular value decomposition (p. 412), and in a somewhat parallel manner,
the core-nilpotent decomposition paves the way to the Jordan form (p. 590).
These two parallel tracks constitute the backbone for the theory of modern linear
algebra, so it’s worthwhile to take a moment and reflect on them.

The range-nullspace decomposition decomposes ℜn with square matrices
while the orthogonal decomposition theorem does it with rectangular matrices.
So does this mean that the range-nullspace decomposition is a special case of,
or somehow weaker than, the orthogonal decomposition theorem? No! Even for
square matrices they are not very comparable because each says something that
the other doesn’t. The core-nilpotent decomposition (and eventually the Jordan
form) is obtained by a similarity transformation, and, as discussed in §§4.8–4.9,
similarity is the primary mechanism for revealing characteristics of A that are
independent of bases or coordinate systems. The URV factorization has little
to say about such things because it is generally not a similarity transforma-
tion. Orthogonal decomposition has the advantage whenever orthogonality is
naturally built into a problem—such as least squares applications. And, as dis-
cussed in §5.7, orthogonal methods often produce numerically stable algorithms
for floating-point computation, whereas similarity transformations are generally
not well suited for numerical computations. The value of similarity is mainly on
the theoretical side of the coin.

So when do we get the best of both worlds—i.e., when is a URV factoriza-
tion also a core-nilpotent decomposition? First, A must be square and, second,
(5.11.11) must be a similarity transformation, so U = V. Surprisingly, this
happens for a rather large class of matrices described below.

Range Perpendicular to Nullspace
For rank (An×n) = r, the following statements are equivalent:
• R (A) ⊥ N (A), (5.11.12)
• R (A) = R

(
AT

)
, (5.11.13)

• N (A) = N
(
AT

)
, (5.11.14)

• A = U
(

Cr×r 0
0 0

)
UT (5.11.15)

in which U is orthogonal and C is nonsingular. Such matrices will
be called RPN matrices, short for“range perpendicular to nullspace.”
Some authors call them range-symmetric or EP matrices. Nonsingular
matrices are trivially RPN because they have a zero nullspace. For com-
plex matrices, replace (⋆)T by (⋆)∗ and “orthogonal” by “unitary.”

Proof. The fact that (5.11.12)⇐⇒ (5.11.13)⇐⇒ (5.11.14) is a direct conse-
quence of (5.11.5). It suffices to prove (5.11.15)⇐⇒ (5.11.13). If (5.11.15) is a
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URV factorization with V = U =
(
U1 |U2), then R (A) = R (U1) = R (V1) =

R
(
AT

)
. Conversely, if R (A) = R

(
AT

)
, perping both sides and using equation

(5.11.5) produces N (A) = N
(
AT

)
, so (5.11.8) yields a URV factorization with

U = V.

Example 5.11.3
A ∈ Cn×n is called a normal matrix whenever AA∗ = A∗A. As illustrated
in Figure 5.11.2, normal matrices fill the niche between hermitian and (complex)
RPN matrices in the sense that real-symmetric⇒ hermitian⇒ normal⇒ RPN,
with no implication being reversible—details are called for in Exercise 5.11.13.

RPN

Normal

Hermitian

Real-Symmetric Nonsingular

Figure 5.11.2

Exercises for section 5.11

5.11.1. Verify the orthogonal decomposition theorem for A=
(

2 1 1
−1 −1 0
−2 −1 −1

)
.

5.11.2. For an inner-product space V, what is V⊥? What is 0⊥?

5.11.3. Find a basis for the orthogonal complement of M=span

⎧
⎨

⎩

⎛

⎝
1
2
0
3

⎞

⎠,

⎛

⎝
2
4
1
6

⎞

⎠

⎫
⎬

⎭ .

5.11.4. For every inner-product space V, prove that if M ⊆ V, then M⊥ is
a subspace of V.

5.11.5. If M and N are subspaces of an n-dimensional inner-product space,
prove that the following statements are true.

(a) M ⊆ N =⇒ N⊥ ⊆ M⊥.
(b) (M + N )⊥ = M⊥ ∩N⊥.
(c) (M ∩N )⊥ = M⊥ + N⊥.
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5.11.6. Explain why the rank plus nullity theorem on p. 199 is a corollary of the
orthogonal decomposition theorem.

5.11.7. Suppose A = URVT is a URV factorization of an m × n matrix of
rank r, and suppose U is partitioned as U =

(
U1 |U2

)
, where U1

is m × r. Prove that P = U1UT
1 is the projector onto R (A) along

N
(
AT

)
. In this case, P is said to be an orthogonal projector because its

range is orthogonal to its nullspace. What is the orthogonal projector
onto N

(
AT

)
along R (A)? (Orthogonal projectors are discussed in

more detail on p. 429.)

5.11.8. Use the Householder reduction method as described in Example 5.11.2
to compute a URV factorization as well as orthonormal bases for the

four fundamental subspaces of A =
(−4 −2 −4 −2

2 −2 2 1
−4 1 −4 −2

)
.

5.11.9. Compute a URV factorization for the matrix given in Exercise 5.11.8 by
using elementary row operations together with Gram–Schmidt orthogo-
nalization. Are the results the same as those of Exercise 5.11.8?

5.11.10. For the matrix A of Exercise 5.11.8, find vectors x ∈ R (A) and
y ∈ N

(
AT

)
such that v = x + y, where v = ( 3 3 3 )T . Is there

more than one choice for x and y?

5.11.11. Construct a square matrix such that R (A)∩N (A) = 0, but R (A) is
not orthogonal to N (A).

5.11.12. For An×n singular, explain why R (A) ⊥ N (A) implies index(A) = 1,
but not conversely.

5.11.13. Prove that real-symmetric matrix ⇒ hermitian ⇒ normal ⇒ (com-
plex) RPN. Construct examples to show that none of the implications
is reversible.

5.11.14. Let A be a normal matrix.
(a) Prove that R (A − λI) ⊥ N (A − λI) for every scalar λ.

(b) Let λ and µ be scalars such that A − λI and A − µI are
singular matrices—such scalars are called eigenvalues of A.
Prove that if λ ̸= µ, then N (A − λI) ⊥ N (A − µI).
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5.10.13. (a) Use part (e) of Exercise 5.10.12 to write A = Q
(

Cr×r 0
0 0

)
Q−1. For the

given E, verify that EA = AE = A for all A ∈ G. The fact that E is the
desired projector follows from (5.9.12).

(b) Simply verify that AA# = A#A = E. Notice that the group inverse
agrees with the Drazin inverse of A described in Example 5.10.5. However, the
Drazin inverse exists for all square matrices, but the concept of a group inverse
makes sense only for group matrices—i.e., when index(A) = 1.

Solutions for exercises in section 5. 11

5.11.1. Proceed as described on p. 199 to determine the following bases for each of the
four fundamental subspaces.

R (A) = span

⎧
⎨

⎩

⎛

⎝
2
−1
−2

⎞

⎠ ,

⎛

⎝
1
−1
−1

⎞

⎠

⎫
⎬

⎭ N
(
AT
)

= span

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭

N (A) = span

⎧
⎨

⎩

⎛

⎝
−1

1
1

⎞

⎠

⎫
⎬

⎭ R
(
AT
)

= span

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
0
1
−1

⎞

⎠

⎫
⎬

⎭

Since each vector in a basis for R (A) is orthogonal to each vector in a basis
for N

(
AT
)
, it follows that R (A) ⊥ N

(
AT
)
. The same logic also explains

why N (A) ⊥ R
(
AT
)
. Notice that R (A) is a plane through the origin in ℜ3,

and N
(
AT
)

is the line through the origin perpendicular to this plane, so it
is evident from the parallelogram law that R (A) ⊕ N

(
AT
)

= ℜ3. Similarly,
N (A) is the line through the origin normal to the plane defined by R

(
AT
)
, so

N (A) ⊕ R
(
AT
)

= ℜ3.

5.11.2. V⊥ = 0, and 0⊥ = V.

5.11.3. If A =

⎛

⎜⎝

1 2
2 4
0 1
3 6

⎞

⎟⎠ , then R (A) = M, so (5.11.5) insures M⊥ = N
(
AT
)
. Using

row operations, a basis for N
(
AT
)

is computed to be

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

−2
1
0
0

⎞

⎟⎠ ,

⎛

⎜⎝

−3
0
0
1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

5.11.4. Verify that M⊥ is closed with respect to vector addition and scalar multipli-
cation. If x,y ∈ M⊥, then ⟨m x⟩ = 0 = ⟨m y⟩ for each m ∈ M so that
⟨m x + y⟩ = 0 for each m ∈M, and thus x + y ∈M⊥. Similarly, for every
scalar α we have ⟨m αx⟩ = α ⟨m x⟩ = 0 for each m ∈M, so αx ∈M⊥.

5.11.5. (a) x ∈ N⊥ =⇒ x ⊥ N ⊇M =⇒ x ⊥ M =⇒ x ∈M⊥.
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(b) Simply observe that

x ∈ (M + N )⊥ ⇐⇒ x ⊥ (M + N )

⇐⇒ x ⊥ M and x ⊥ N

⇐⇒ x ∈
(
M⊥ ∩N⊥) .

(c) Use part (b) together with (5.11.4 ) to write

(
M⊥ + N⊥)⊥ = M⊥⊥

∩N⊥⊥
= M ∩N ,

and then perp both sides.
5.11.6. Use the fact that dim R

(
AT
)

= rank
(
AT
)

= rank (A) = dimR (A) together
with (5.11.7) to conclude that

n = dimN (A) + dimR
(
AT
)

= dimN (A) + dimR (A).

5.11.7. U is a unitary matrix in which the columns of U1 are an orthonormal basis for
R (A) and the columns of U2 are an orthonormal basis for N

(
AT
)
, so setting

X = U1, Y = U2, and
[
X |Y

]−1 = UT in (5.9.12) produces P = U1UT
1.

According to (5.9.9), the projector onto N
(
AT
)

along R (A) is I − P = I −
U1UT

1 = U2UT
2 .

5.11.8. Start with the first column of A, and set u = A∗1+ 6 e1= ( 2 2 − 4 )T to
obtain

R1= I− 2uuT

uT u
=

1
3

⎛

⎝
2 −1 2
−1 2 2

2 2 −1

⎞

⎠ and R1A =

⎛

⎝
− 6 0 − 6 −3

0 0 0 0
0 −3 0 0

⎞

⎠ .

Now set u =
(

0
−3

)
+ 3e1=

(
3
−3

)
to get

R̂2 = I − 2uuT

uT u
=
(

0 1
1 0

)
and R2 =

(
1 0
0 R̂2

)
=

⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ ,

so

P = R2R1=
1
3

⎛

⎝
2 −1 2
2 2 −1
−1 2 2

⎞

⎠ and PA =

⎛

⎝
− 6 0 − 6 −3

0 −3 0 0
0 0 0 0

⎞

⎠ =
(

B
0

)
.
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Therefore, rank (A) = 2, and orthonormal bases for R (A) and N
(
AT
)

are
extracted from the columns of U = PT as shown below.

R (A) = span

⎧
⎨

⎩

⎛

⎝
2/3
−1/3

2/3

⎞

⎠ ,

⎛

⎝
2/3
2/3
−1/3

⎞

⎠

⎫
⎬

⎭ and N
(
AT
)

= span

⎧
⎨

⎩

⎛

⎝
−1/3

2/3
2/3

⎞

⎠

⎫
⎬

⎭

Now work with BT , and set u = (B1∗)T + 9e1= ( 3 0 − 6 −3 )T to get

Q = I− 2uuT

uT u
=

1
3

⎛

⎜⎝

2 0 2 1
0 3 0 0
2 0 −1 −2
1 0 −2 2

⎞

⎟⎠ and QBT =

⎛

⎜⎝

−9 0
0 −3
0 0
0 0

⎞

⎟⎠ =
(

T
0

)
.

Orthonormal bases for R
(
AT
)

and N (A) are extracted from the columns of
V = QT = Q as shown below.

R
(
AT
)
=span

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

2/3
0

2/3
1/3

⎞

⎟⎠ ,

⎛

⎜⎝

0
1
0
0

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
and N (A)=span

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

2/3
0
−1/3
−2/3

⎞

⎟⎠ ,

⎛

⎜⎝

1/3
0
−2/3

2/3

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

A URV factorization is obtained by setting U = PT , V = QT , and

R =
(

TT 0
0 0

)
=

⎛

⎝
−9 0 0 0

0 −3 0 0
0 0 0 0

⎞

⎠ .

5.11.9. Using EA =

⎛

⎝
1 0 1 1/2
0 1 0 0
0 0 0 0

⎞

⎠ along with the standard methods of Chapter 4 ,

we have

R (A) = span

⎧
⎨

⎩

⎛

⎝
− 4

2
− 4

⎞

⎠ ,

⎛

⎝
−2
−2

1

⎞

⎠

⎫
⎬

⎭ and N
(
AT
)

= span

⎧
⎨

⎩

⎛

⎝
−1

2
2

⎞

⎠

⎫
⎬

⎭ ,

R
(
AT
)

= span

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

1
0
1

1/2

⎞

⎟⎠ ,

⎛

⎜⎝

0
1
0
0

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
and N (A) = span

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

−1
0
1
0

⎞

⎟⎠ ,

⎛

⎜⎝

−1/2
0
0
1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

Applying the Gram–Schmidt procedure to each of these sets produces the fol-
lowing orthonormal bases for the four fundamental subspaces.

BR(A) =

⎧
⎨

⎩
1
3

⎛

⎝
−2

1
−2

⎞

⎠ ,
1
3

⎛

⎝
−2
−2

1

⎞

⎠

⎫
⎬

⎭ B
N(AT ) =

⎧
⎨

⎩
1
3

⎛

⎝
−1

2
2

⎞

⎠

⎫
⎬

⎭
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B
R(AT ) =

⎧
⎪⎨

⎪⎩
1
3

⎛

⎜⎝

2
0
2
1

⎞

⎟⎠ ,

⎛

⎜⎝

0
1
0
0

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
BN(A) =

⎧
⎪⎨

⎪⎩
1√
2

⎛

⎜⎝

−1
0
1
0

⎞

⎟⎠ ,
1

3
√

2

⎛

⎜⎝

−1
0
−1

4

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

The matrices U and V were defined in (5.11.8) to be

U =
(
BR(A) ∪ B

N(AT )
)

=
1
3

⎛

⎝
−2 −2 −1

1 −2 2
−2 1 2

⎞

⎠

and

V =
(
B

R(AT ) ∪ BN(A)

)
=

1
3

⎛

⎜⎝

2 0 −3/
√

2 −1/
√

2
0 3 0 0
2 0 3/

√
2 −1/

√
2

1 0 0 4 /
√

2

⎞

⎟⎠ .

Direct multiplication now produces

R = UT AV =

⎛

⎝
9 0 0 0
0 3 0 0
0 0 0 0

⎞

⎠ .

5.11.10. According to the discussion of projectors on p. 386 , the unique vectors satisfying
v = x+y, x ∈ R (A), and y ∈ N

(
AT
)

are given by x = Pv and y = (I−P)v,
where P is the projector onto R (A) along N

(
AT
)
. Use the results of Exercise

5.11.7 and Exercise 5.11.8 to compute

P = U1UT
1 =

1
9

⎛

⎝
8 2 2
2 5 − 4
2 − 4 5

⎞

⎠ , x = Pv =

⎛

⎝
4
1
1

⎞

⎠ , y = (I − P)v =

⎛

⎝
−1

2
2

⎞

⎠ .

5.11.11. Observe that
R (A) ∩N (A) = 0 =⇒ index(A) ≤ 1,

R (A) ̸⊥ N (A) =⇒ A is singular,

R (A) ̸⊥ N (A) =⇒ R
(
AT
)
̸= R (A).

It is now trial and error to build a matrix that satisfies the three conditions on
the right-hand side. One such matrix is A =

(
1 2
1 2

)
.

5.11.12. R (A) ⊥ N (A) =⇒ R (A)∩N (A) = 0 =⇒ index(A) = 1 by using (5.10.4 ).
The example in the solution to Exercise 5.11.11 shows that the converse is false.

5.11.13. The facts that real symmetric =⇒ hermitian =⇒ normal are direct conse-
quences of the definitions. To show that normal =⇒ RPN, use (4 .5.5) to write

R (A) = R (AA∗) = R (A∗A) = R (A∗). The matrix
(

1 i
− i 2

)
is hermitian

but not symmetric. To construct a matrix that is normal but not hermitian or



Solutions 97

real symmetric, try to find an example with real numbers. If A =
(

a b
c d

)
,

then

AAT =
(

a2 + b2 ac + bd
ac + bd c2 + d2

)
and AT A =

(
a2 + c2 ab + cd
ab + cd b2 + d2

)
,

so we need to have b2 = c2. One such matrix is A =
(

1 −1
1 1

)
. To construct

a singular matrix that is RPN but not normal, try again to find an example with
real numbers. For any orthogonal matrix P and nonsingular matrix C, the

matrix A = P
(

C 0
0 0

)
PT is RPN. To prevent A from being normal, simply

choose C to be nonnormal. For example, let C =
(

1 2
3 4

)
and P = I.

5.11.14. (a) A∗A = AA∗ =⇒ (A − λI)∗ (A − λI) = (A − λI) (A − λI)∗ =⇒
(A − λI) is normal =⇒ (A − λI) is RPN =⇒ R (A − λI) ⊥ N (A − λI) .

(b) Suppose x ∈ N (A − λI) and y ∈ N (A − µI), and use the fact that
N (A − λI) = N (A − λI)∗ to write

(A − λI)x = 0 =⇒ 0 = x∗ (A − λI) =⇒ 0 = x∗ (A − λI)y
= x∗(µy − λy) = x∗y(µ − λ) =⇒ x∗y = 0.

Solutions for exercises in section 5. 12

5.12.1. Since CT C =
(

25 0
0 100

)
, σ2

1 = 100, and it’s clear that x = e2 is a vector

such that (CT C − 100I)x = 0 and ∥x∥2 = 1. Let y = Cx/σ1 =
(
−3/5
− 4 /5

)
.

Following the procedure in Example 5.6 .3, set ux = x − e1 and uy = y − e1,
and construct

Rx = I − 2
uxuT

x

uT
x ux

=
(

0 1
1 0

)
and Ry = I − 2

uyuT
y

uT
y uy

=
(
−3/5 − 4 /5
− 4 /5 3/5

)
.

Since RyCRx =
(

10 0
0 5

)
= D, it follows that C = RyDRx is a singular

value decomposition of C.
5.12.2. ν2

1(A) = σ2
1 = ∥A∥22 needs no proof—it’s just a restatement of (5.12.4 ). The

fact that ν2
r (A) = ∥A∥2F amounts to observing that

∥A∥2F = trace
(
AT A

)
= traceV

(
D2 0
0 0

)
VT = trace

(
D2
)

= σ2
1+ · · · + σ2

r .


