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5.12 SINGULAR VALUE DECOMPOSITION

For an m × n matrix A of rank r, Example 5.11.2 shows how to build a URV
factorization

A = URVT = U
(

Cr×r 0
0 0

)

m×n

VT

in which C is triangular. The purpose of this section is to prove that it’s possible
to do even better by showing that C can be made to be diagonal . To see how,
let σ1 = ∥A∥2 = ∥C∥2 (Exercise 5.6.9), and recall from the proof of (5.2.7) on
p. 281 that ∥C∥2 = ∥Cx∥2 for some vector x such that

(CT C − λI)x = 0, where ∥x∥2 = 1 and λ = xT CT Cx = σ2
1 . (5.12.1)

Set y = Cx/∥Cx∥2 = Cx/σ1, and let Ry =
(
y |Y

)
and Rx =

(
x |X

)
be

elementary reflectors having y and x as their first columns, respectively—recall
Example 5.6.3. Reflectors are orthogonal matrices, so xT X = 0 and YT y = 0,
and these together with (5.12.1) yield

yT CX =
xT CT CX

σ1
=

λxT X
σ1

= 0 and YT Cx = σ1YT y = 0.

Coupling these facts with yT Cx = yT (σ1y) = σ1 and Ry = RT
y produces

RyCRx =

(
yT

YT

)
C

(
x |X

)
=

(
yT Cx yT CX
YT Cx YT CX

)
=

(
σ1 0
0 C2

)

with σ1 ≥ ∥C2∥2 (because σ1 = ∥C∥2 = max{σ1, ∥C2∥} by (5.2.12)). Repeat-
ing the process on C2 yields reflectors Sy, Sx such that

SyC2Sx =
(

σ2 0
0 C3

)
, where σ2 ≥ ∥C3∥2 .

If P2 and Q2 are the orthogonal matrices

P2 =
(

1 0
0 Sy

)
Ry, Q2 = Rx

(
1 0
0 Sx

)
, then P2CQ2 =

⎛

⎝
σ1 0 0
0 σ2 0
0 0 C3

⎞

⎠

in which σ1 ≥ σ2 ≥ ∥C3∥2 . Continuing for r − 1 times produces orthogonal
matrices Pr−1 and Qr−1 such that Pr−1CQr−1 = diag (σ1, σ2, . . . , σr) = D,
where σ1 ≥ σ2 ≥ · · · ≥ σr. If ŨT and Ṽ are the orthogonal matrices

ŨT =
(

Pr−1 0
0 I

)
UT and Ṽ = V

(
Qr−1 0

0 I

)
, then ŨT AṼ =

(
D 0
0 0

)
,

and thus the singular value decomposition (SVD) is derived. 57

57
The SVD has been independently discovered and rediscovered several times. Those credited
with the early developments include Eugenio Beltrami (1835–1899) in 1873, M. E. Camille
Jordan (1838–1922) in 1875, James J. Sylvester (1814–1897) in 1889, L. Autonne in 1913, and
C. Eckart and G. Young in 1936.
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Singular Value Decomposition
For each A ∈ ℜm×n of rank r, there are orthogonal matrices Um×m,
Vn×n and a diagonal matrix Dr×r = diag (σ1, σ2, . . . , σr) such that

A = U
(

D 0
0 0

)

m×n

VT with σ1 ≥ σ2 ≥ · · · ≥ σr > 0. (5.12.2)

The σi ’s are called the nonzero singular values of A. When
r < p = min{m, n}, A is said to have p − r additional zero singular
values. The factorization in (5.12.2) is called a singular value decom-
position of A, and the columns in U and V are called left-hand and
right-hand singular vectors for A, respectively.

While the constructive method used to derive the SVD can be used as an
algorithm, more sophisticated techniques exist, and all good matrix computation
packages contain numerically stable SVD implementations. However, the details
of a practical SVD algorithm are too complicated to be discussed at this point.

The SVD is valid for complex matrices when (⋆)T is replaced by (⋆)∗, and
it can be shown that the singular values are unique, but the singular vectors
are not. In the language of Chapter 7, the σ2

i ’s are the eigenvalues of AT A,
and the singular vectors are specialized sets of eigenvectors for AT A—see the
summary on p. 555. In fact, the practical algorithm for computing the SVD is
an implementation of the QR iteration (p. 535) that is cleverly applied to AT A
without ever explicitly computing AT A.

Singular values reveal something about the geometry of linear transforma-
tions because the singular values σ1 ≥ σ2 ≥ · · · ≥ σn of a matrix A tell us how
much distortion can occur under transformation by A. They do so by giving us
an explicit picture of how A distorts the unit sphere. To develop this, suppose
that A ∈ ℜn×n is nonsingular (Exercise 5.12.5 treats the singular and rectangu-
lar case), and let S2 = {x | ∥x∥2 = 1} be the unit 2-sphere in ℜn. The nature
of the image A(S2) is revealed by considering the singular value decompositions

A = UDVT and A−1 = VD−1UT with D = diag (σ1, σ2, . . . , σn) ,

where U and V are orthogonal matrices. For each y ∈ A(S2) there is an
x ∈ S2 such that y = Ax, so, with w = UT y,

1 = ∥x∥2
2 =

∥∥A−1Ax
∥∥2

2
=

∥∥A−1y
∥∥2

2
=

∥∥VD−1UT y
∥∥2

2
=

∥∥D−1UT y
∥∥2

2

=
∥∥D−1w

∥∥2

2
=

w2
1

σ2
1

+
w2

2

σ2
2

+ · · · + w2
r

σ2
r

.

(5.12.3)
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This means that UT A(S2) is an ellipsoid whose kth semiaxis has length
σk. Because orthogonal transformations are isometries (length preserving trans-
formations), UT can only affect the orientation of A(S2) , so A(S2) is also an
ellipsoid whose kth semiaxis has length σk. Furthermore, (5.12.3) implies that
the ellipsoid UT A(S2) is in standard position—i.e., its axes are directed along
the standard basis vectors ek. Since U maps UT A(S2) to A(S2), and since
Uek = U∗k, it follows that the axes of A(S2) are directed along the left-hand
singular vectors defined by the columns of U. Therefore, the kth semiaxis of
A(S2) is σkU∗k. Finally, since AV = UD implies AV∗k = σkU∗k, the right-
hand singular vector V∗k is a point on S2 that is mapped to the kth semiaxis
vector on the ellipsoid A(S2). The picture in ℜ3 looks like Figure 5.12.1.

1

A

σ1U∗1

σ2U∗2

σ3U∗3

V∗1
V∗2

V∗3

Figure 5.12.1

The degree of distortion of the unit sphere under transformation by A
is therefore measured by κ2 = σ1/σn, the ratio of the largest singular value
to the smallest singular value. Moreover, from the discussion of induced ma-
trix norms (p. 280) and the unitary invariance of the 2-norm (Exercise 5.6.9),

max
∥x∥2=1

∥Ax∥2 = ∥A∥2 =
∥∥UDVT

∥∥
2

= ∥D∥2 = σ1

and

min
∥x∥2=1

∥Ax∥2 =
1

∥A−1∥2

=
1

∥VD−1UT ∥2

=
1

∥D−1∥2

= σn.

In other words, longest and shortest vectors on A(S2) have respective lengths
σ1 = ∥A∥2 and σn = 1/

∥∥A−1
∥∥

2
(this justifies Figure 5.2.1 on p. 281), so

κ2 = ∥A∥2

∥∥A−1
∥∥

2
. This is called the 2-norm condition number of A. Differ-

ent norms result in condition numbers with different values but with more or
less the same order of magnitude as κ2 (see Exercise 5.12.3), so the qualitative
information about distortion is the same. Below is a summary.
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Image of the Unit Sphere
For a nonsingular An×n having singular values σ1 ≥ σ2 ≥ · · · ≥ σn

and an SVD A = UDVT with D = diag (σ1, σ2, . . . , σn) , the image
of the unit 2-sphere is an ellipsoid whose kth semiaxis is given by σkU∗k

(see Figure 5.12.1). Furthermore, V∗k is a point on the unit sphere such
that AV∗k = σkU∗k. In particular,
• σ1 = ∥AV∗1∥2 = max

∥x∥2=1
∥Ax∥2 = ∥A∥2, (5.12.4)

• σn = ∥AV∗n∥2 = min
∥x∥2=1

∥Ax∥2 = 1/∥A−1∥2. (5.12.5)

The degree of distortion of the unit sphere under transformation by A
is measured by the 2-norm condition number

• κ2 =
σ1

σn
= ∥A∥2

∥∥A−1
∥∥

2
≥ 1. (5.12.6)

Notice that κ2 = 1 if and only if A is an orthogonal matrix.

The amount of distortion of the unit sphere under transformation by A
determines the degree to which uncertainties in a linear system Ax = b can be
magnified. This is explained in the following example.

Example 5.12.1
Uncertainties in Linear Systems. Systems of linear equations Ax = b aris-
ing in practical work almost always come with built-in uncertainties due to mod-
eling errors (because assumptions are almost always necessary), data collection
errors (because infinitely precise gauges don’t exist), and data entry errors (be-
cause numbers like

√
2, π, and 2/3 can’t be entered exactly). In addition,

roundoff error in floating-point computation is a prevalent source of uncertainty.
In all cases it’s important to estimate the degree of uncertainty in the solution
of Ax = b. This is not difficult when A is known exactly and all uncertainty
resides in the right-hand side. Even if this is not the case, it’s sometimes possible
to aggregate uncertainties and shift all of them to the right-hand side.
Problem: Let Ax = b be a nonsingular system in which A is known exactly
but b is subject to an uncertainty e, and consider Ax̃ = b− e = b̃. Estimate
the relative uncertainty 58 ∥x − x̃∥ / ∥x∥ in x in terms of the relative uncertainty
∥b − b̃∥/ ∥b∥ = ∥e∥ / ∥b∥ in b. Use any vector norm and its induced matrix
norm (p. 280).

58
Knowing the absolute uncertainty ∥x − x̃∥ by itself may not be meaningful. For example, an
absolute uncertainty of a half of an inch might be fine when measuring the distance between
the earth and the moon, but it’s not good in the practice of eye surgery.
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Solution: Use ∥b∥ = ∥Ax∥ ≤ ∥A∥ ∥x∥ with x − x̃ = A−1e to write

∥x − x̃∥
∥x∥ =

∥∥A−1e
∥∥

∥x∥ ≤
∥A∥

∥∥A−1
∥∥ ∥e∥

∥b∥ = κ
∥e∥
∥b∥ , (5.12.7)

where κ = ∥A∥
∥∥A−1

∥∥ is a condition number as discussed earlier (κ = σ1/σn

if the 2-norm is used). Furthermore, ∥e∥ = ∥A(x − x̃)∥ ≤ ∥A∥ ∥(x − x̃)∥ and
∥x∥ ≤

∥∥A−1
∥∥ ∥b∥ imply

∥x − x̃∥
∥x∥ ≥ ∥e∥

∥A∥ ∥x∥ ≥ ∥e∥
∥A∥ ∥A−1∥ ∥b∥ =

1
κ

∥e∥
∥b∥ .

This with (5.12.7) yields the following bounds on the relative uncertainty:

κ−1 ∥e∥
∥b∥ ≤ ∥x − x̃∥

∥x∥ ≤ κ
∥e∥
∥b∥ , where κ = ∥A∥

∥∥A−1
∥∥ . (5.12.8)

In other words, when A is well conditioned (i.e., when κ is small—see the rule
of thumb in Example 3.8.2 to get a feeling of what “small” and “large” might
mean), (5.12.8) insures that small relative uncertainties in b cannot greatly
affect the solution, but when A is ill conditioned (i.e., when κ is large), a
relatively small uncertainty in b might result in a relatively large uncertainty
in x. To be more sure, the following problem needs to be addressed.
Problem: Can equality be realized in each bound in (5.12.8) for every nonsin-
gular A, and if so, how?

Solution: Use the 2-norm, and let A = UDVT be an SVD so AV∗k = σkU∗k

for each k. If b and e are directed along left-hand singular vectors associated
with σ1 and σn, respectively—say, b = βU∗1 and e = ϵU∗n, then

x = A−1b = A−1(βU∗1) =
βV∗1
σ1

and x−x̃ = A−1e = A−1(ϵU∗n) =
ϵV∗n

σn
,

so

∥x − x̃∥2

∥x∥2

=
(

σ1

σn

)
|ϵ|
|β| = κ2

∥e∥2

∥b∥2

when b = βU∗1 and e = ϵU∗n.

Thus the upper bound (the worst case) in (5.12.8) is attainable for all A. The
lower bound (the best case) is realized in the opposite situation when b and e
are directed along U∗n and U∗1, respectively. If b = βU∗n and e = ϵU∗1,
then the same argument yields x = σ−1

n βV∗n and x − x̃ = σ−1
1 ϵV∗1, so

∥x − x̃∥2

∥x∥2

=
(

σn

σ1

)
|ϵ|
|β| = κ−1

2

∥e∥2

∥b∥2

when b = βU∗n and e = ϵU∗1.
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Therefore, if A is well conditioned, then relatively small uncertainties in b can’t
produce relatively large uncertainties in x. But when A is ill conditioned, it’s
possible for relatively small uncertainties in b to have relatively large effects on
x, and it’s also possible for large uncertainties in b to have almost no effect on
x. Since the direction of e is almost always unknown, we must guard against the
worst case and proceed with caution when dealing with ill-conditioned matrices.
Problem: What if there are uncertainties in both sides of Ax = b?

Solution: Use calculus to analyze the situation by considering the entries of
A = A(t) and b = b(t) to be differentiable functions of a variable t, and
compute the relative size of the derivative of x = x(t) by differentiating b = Ax
to obtain b′ = (Ax)′ = A′x + Ax′ (with ⋆′ denoting d ⋆/dt ), so

∥x′∥ =
∥∥A−1b′ − A−1A′x

∥∥ ≤
∥∥A−1b′∥∥ +

∥∥A−1A′x
∥∥

≤
∥∥A−1

∥∥ ∥b′∥ +
∥∥A−1

∥∥ ∥A′∥ ∥x∥ .

Consequently,
∥x′∥
∥x∥ ≤

∥∥A−1
∥∥ ∥b′∥

∥x∥ +
∥∥A−1

∥∥ ∥A′∥

≤ ∥A∥
∥∥A−1

∥∥ ∥b′∥
∥A∥ ∥x∥ + ∥A∥

∥∥A−1
∥∥ ∥A′∥
∥A∥

≤ κ
∥b′∥
∥b∥ + κ

∥A′∥
∥A∥ = κ

(
∥b′∥
∥b∥ +

∥A′∥
∥A∥

)
.

In other words, the relative sensitivity of the solution is the sum of the relative
sensitivities of A and b magnified by κ = ∥A∥

∥∥A−1
∥∥ . A discrete analog of

the above inequality is developed in Exercise 5.12.12.
Conclusion: In all cases, the credibility of the solution to Ax = b in the face
of uncertainties must be gauged in relation to the condition of A.

As the next example shows, the condition number is pivotal also in deter-
mining whether or not the residual r = b − Ax̃ is a reliable indicator of the
accuracy of an approximate solution x̃.

Example 5.12.2
Checking an Answer. Suppose that x̃ is a computed (or otherwise approxi-
mate) solution for a nonsingular system Ax = b, and suppose the accuracy of
x̃ is “checked” by computing the residual r = b − Ax̃. If r = 0, exactly,
then x̃ must be the exact solution. But if r is not exactly zero—say, ∥r∥2 is
zero to t significant digits—are we guaranteed that x̃ is accurate to roughly t
significant figures? This question was briefly examined in Example 1.6.3, but it’s
worth another look.
Problem: To what extent does the size of the residual reflect the accuracy of
an approximate solution?
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Solution: Without realizing it, we answered this question in Example 5.12.1.
To bound the accuracy of x̃ relative to the exact solution x, write r = b−Ax̃
as Ax̃ = b − r, and apply (5.12.8) with e = r to obtain

κ−1 ∥r∥2

∥b∥2

≤ ∥x − x̃∥
∥x∥ ≤ κ

∥r∥2

∥b∥2

, where κ = ∥A∥2

∥∥A−1
∥∥

2
. (5.12.9)

Therefore, for a well-conditioned A, the residual r is relatively small if and
only if x̃ is relatively accurate. However, as demonstrated in Example 5.12.1,
equality on either side of (5.12.9) is possible, so, when A is ill conditioned, a
very inaccurate approximation x̃ can produce a small residual r, and a very
accurate approximation can produce a large residual.
Conclusion: Residuals are reliable indicators of accuracy only when A is well
conditioned—if A is ill conditioned, residuals are nearly meaningless.

In addition to measuring the distortion of the unit sphere and gauging the
sensitivity of linear systems, singular values provide a measure of how close A
is to a matrix of lower rank.

Distance to Lower-Rank Matrices
If σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of Am×n, then
for each k < r, the distance from A to the closest matrix of rank k is

σk+1 = min
rank(B)=k

∥A − B∥2. (5.12.10)

Proof. Suppose rank (Bm×n) = k, and let A = U
(

D 0
0 0

)
VT be an SVD

for A with D = diag (σ1, σ2, . . . , σr) . Define S = diag (σ1, . . . , σk+1), and
partition V =

(
Fn×k+1 |G

)
. Since rank (BF) ≤ rank (B) = k (by (4.5.2)),

dim N (BF) = k+1−rank (BF) ≥ 1, so there is an x ∈ N (BF) with ∥x∥2 = 1.
Consequently, BFx = 0 and

AFx = U
(

D 0
0 0

)
VT Fx = U

⎛

⎝
S 0 0
0 ⋆ 0
0 0 0

⎞

⎠

⎛

⎝
x
0
0

⎞

⎠ = U

⎛

⎝
Sx
0
0

⎞

⎠ .

Since ∥A − B∥2 = max∥y∥2=1 ∥(A − B)y∥2 , and since ∥Fx∥2 = ∥x∥2 = 1
(recall (5.2.4), p. 280, and (5.2.13), p. 283),

∥A − B∥2
2 ≥ ∥(A − B)Fx∥2

2 = ∥Sx∥2
2 =

k+1∑

i=1

σ2
i x2

i ≥ σ2
k+1

k+1∑

i=1

x2
i = σ2

k+1.

Equality holds for Bk = U
(

Dk 0
0 0

)
VT with Dk = diag (σ1, . . . , σk), and thus

(5.12.10) is proven.
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Example 5.12.3
Filtering Noisy Data. The SVD can be a useful tool in applications involving
the need to sort through noisy data and lift out relevant information. Suppose
that Am×n is a matrix containing data that are contaminated with a certain
level of noise—e.g., the entries A might be digital samples of a noisy video or
audio signal such as that in Example 5.8.3 (p. 359). The SVD resolves the data
in A into r mutually orthogonal components by writing

A = U
(

Dr×r 0
0 0

)
VT =

r∑

i=1

σiuivT
i =

r∑

i=1

σiZi, (5.12.11)

where Zi = uivT
i and σ1 ≥ σ2 ≥ · · · ≥ σr > 0. The matrices {Z1,Z2, . . . ,Zr}

constitute an orthonormal set because

⟨Zi Zj⟩ = trace
(
ZT

i Zj

)
=

{
0 if i ̸= j,
1 if i = j.

In other words, the SVD (5.12.11) can be regarded as a Fourier expansion as
described on p. 299 and, consequently, σi = ⟨Zi A⟩ can be interpreted as the
proportion of A lying in the “direction” of Zi. In many applications the noise
contamination in A is random (or nondirectional) in the sense that the noise
is distributed more or less uniformly across the Zi’s. That is, there is about as
much noise in the “direction” of one Zi as there is in the “direction” of any
other. Consequently, we expect each term σiZi to contain approximately the
same level of noise. This means that if SNR(σiZi) denotes the signal-to-noise
ratio in σiZi, then

SNR(σ1Z1) ≥ SNR(σ2Z2) ≥ · · · ≥ SNR(σrZr),

more or less. If some of the singular values, say, σk+1, . . . , σr, are small relative to
(total noise)/r, then the terms σk+1Zk+1, . . . , σrZr have small signal-to-noise
ratios. Therefore, if we delete these terms from (5.12.11), then we lose a small part
of the total signal, but we remove a disproportionately large component of the
total noise in A. This explains why a truncated SVD Ak =

∑k
i=1 σiZi can, in

many instances, filter out some of the noise without losing significant information
about the signal in A. Determining the best value of k often requires empirical
techniques that vary from application to application, but looking for obvious
gaps between large and small singular values is usually a good place to start.
The next example presents an interesting application of this idea to building an
Internet search engine.
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Example 5.12.4
Search Engines. The filtering idea presented in Example 5.12.3 is widely used,
but a particularly novel application is the method of latent semantic indexing
used in the areas of information retrieval and text mining. You can think of
this in terms of building an Internet search engine. Start with a dictionary of
terms T1, T2, . . . , Tm. Terms are usually single words, but sometimes a term
may contain more that one word such as “landing gear.” It’s up to you to decide
how extensive your dictionary should be, but even if you use the entire English
language, you probably won’t be using more than a few hundred-thousand terms,
and this is within the capacity of existing computer technology. Each document
(or web page) Dj of interest is scanned for key terms (this is called indexing the
document), and an associated document vector dj = (freq1j , freq2j , . . . , freqmj)T

is created in which

freqij = number of times term Ti occurs in document Dj .

(More sophisticated search engines use weighted frequency strategies.) After a
collection of documents D1, D2, . . . , Dn has been indexed, the associated docu-
ment vectors dj are placed as columns in a term-by-document matrix

Am×n =
(
d1 |d2 · · · |dn

)
=

⎛

⎜⎜⎜⎝

D1 D2 · · · Dn

T1 freq11 freq12 · · · freq1n

T2 freq21 freq22 · · · freq2n
...

...
...

...
Tm freqm1 freqm2 · · · freqmn

⎞

⎟⎟⎟⎠
.

Naturally, most entries in each document vector dj will be zero, so A is a
sparse matrix—this is good because it means that sparse matrix technology can
be applied. When a query composed of a few terms is submitted to the search
engine, a query vector qT = (q1, q2, . . . , qn) is formed in which

qi =
{ 1 if term Ti appears in the query,

0 otherwise.

(The qi ’s might also be weighted.) To measure how well a query q matches a
document Dj , we check how close q is to dj by computing the magnitude of

cos θj =
qT dj

∥q∥2 ∥dj∥2

=
qT Aej

∥q∥2 ∥Aej∥2

. (5.12.12)

If | cos θj | ≥ τ for some threshold tolerance τ, then document Dj is con-
sidered relevant and is returned to the user. Selecting τ is part art and part
science that’s based on experimentation and desired performance criteria. If the
columns of A along with q are initially normalized to have unit length, then
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|qT A| =
(
| cos θ1|, | cos θ2|, . . . , | cos θn|

)
provides the information that allows

the search engine to rank the relevance of each document relative to the query.
However, due to things like variation and ambiguity in the use of vocabulary,
presentation style, and even the indexing process, there is a lot of “noise” in
A, so the results in |qT A| are nowhere near being an exact measure of how
well query q matches the various documents. To filter out some of this noise,
the techniques of Example 5.12.3 are employed. An SVD A =

∑r
i=1 σiuivT

i is
judiciously truncated, and

Ak = UkDkVT
k =

(
u1 | · · · |uk

)
⎛

⎝
σ1

. . .
σk

⎞

⎠

⎛

⎜⎝
vT

1
...

vT
k

⎞

⎟⎠ =
k∑

i=1

σiuivT
i

is used in place of A in (5.12.12). In other words, instead of using cos θj , query
q is compared with document Dj by using the magnitude of

cos φj =
qT Akej

∥q∥2 ∥Akej∥2

.

To make this more suitable for computation, set Sk = DkVT
k =

(
s1 | s2 | · · · | sk

)
,

and use
∥Akej∥2 =

∥∥UkDkVT
k ej

∥∥
2

= ∥Uksj∥2 = ∥sj∥2

to write

cos φj =
qT Uksj

∥q∥2 ∥sj∥2

. (5.12.13)

The vectors in Uk and Sk only need to be computed once (and they can be
determined without computing the entire SVD), so (5.12.13) requires very little
computation to process each new query. Furthermore, we can be generous in the
number of SVD components that are dropped because variation in the use of
vocabulary and the ambiguity of many words produces significant noise in A.
Coupling this with the fact that numerical accuracy is not an important issue
(knowing a cosine to two or three significant digits is sufficient) means that we
are more than happy to replace the SVD of A by a low-rank truncation Ak,
where k is significantly less than r.

Alternate Query Matching Strategy. An alternate way to measuring how
close a given query q is to a document vector dj is to replace the query vector
q in (5.12.12) by the projected query q̃ = PR(A)q, where PR(A) = UrUT

r is the
orthogonal projector onto R (A) along R (A)⊥ (Exercise 5.12.15) to produce

cos θ̃j =
q̃T Aej

∥q̃∥2 ∥Aej∥2

. (5.12.14)
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It’s proven on p. 435 that q̃ = PR(A)q is the vector in R (A) (the document
space) that is closest to q, so using q̃ in place of q has the effect of using the
best approximation to q that is a linear combination of the document vectors
di. Since q̃T A = qT A and ∥q̃∥2 ≤ ∥q∥2 , it follows that cos θ̃j ≥ cos θj , so
more documents are deemed relevant when the projected query is used. Just as
in the unprojected query matching strategy, the noise is filtered out by replacing
A in (5.12.14) with a truncated SVD Ak =

∑k
i=1 σiuivT

i . The result is

cos φ̃j =
qT Uksj∥∥UT
k q

∥∥
2
∥sj∥2

and, just as in (5.12.13), cos φ̃j is easily and quickly computed for each new
query q because Uk and sj need only be computed once.

The next example shows why singular values are the primary mechanism
for numerically determining the rank of a matrix.

Example 5.12.5
Perturbations and Numerical Rank. For A ∈ ℜm×n with p = min{m, n},
let {σ1, σ2, . . . , σp} and {β1, β2, . . . , βp} be all singular values (nonzero as well
as any zero ones) for A and A + E, respectively.
Problem: Prove that

|σk − βk| ≤ ∥E∥2 for each k = 1, 2, . . . , p. (5.12.15)

Solution: If the SVD for A given in (5.12.2) is written in the form

A =
p∑

i=1

σiuivT
i , and if we set Ak−1 =

k−1∑

i=1

σiuivT
i ,

then
σk = ∥A − Ak−1∥2 = ∥A + E − Ak−1 − E∥2

≥ ∥A + E − Ak−1∥2 − ∥E∥2 (recall (5.1.6) on p. 273)

≥ βk − ∥E∥2 by (5.12.10).

Couple this with the observation that

σk = min
rank(B)=k−1

∥A − B∥2 = min
rank(B)=k−1

∥A + E − B − E∥2

≤ min
rank(B)=k−1

∥A + E − B∥2 + ∥E∥2 = βk + ∥E∥2

to conclude that |σk − βk| ≤ ∥E∥2.
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Problem: Explain why this means that computing the singular values of A
with any stable algorithm (one that returns the exact singular values βk of a
nearby matrix A + E) is a good way to compute rank (A).

Solution: If rank (A) = r, then p − r of the σk ’s are exactly zero, so the
perturbation result (5.12.15) guarantees that p−r of the computed βk ’s cannot
be larger than ∥E∥2. So if

β1 ≥ · · · ≥ βr̃ > ∥E∥2 ≥ βr̃+1 ≥ · · · ≥ βp,

then it’s reasonable to consider r̃ to be the numerical rank of A. For most
algorithms, ∥E∥2 is not known exactly, but adequate estimates of ∥E∥2 often
can be derived. Considerable effort has gone into the development of stable al-
gorithms for computing singular values, but such algorithms are too involved
to discuss here—consult an advanced book on matrix computations. Gener-
ally speaking, good SVD algorithms have ∥E∥2 ≈ 5 × 10−t∥A∥2 when t-digit
floating-point arithmetic is used.

Just as the range-nullspace decomposition was used in Example 5.10.5 to
define the Drazin inverse of a square matrix, a URV factorization or an SVD
can be used to define a generalized inverse for rectangular matrices. For a URV
factorization

Am×n = U
(

C 0
0 0

)

m×n

VT , we define A†
n×m = V

(
C−1 0
0 0

)

n×m

UT

to be the Moore–Penrose inverse (or the pseudoinverse) of A. (Replace
(⋆)T by (⋆)∗ when A ∈ Cm×n. ) Although the URV factors are not uniquely
defined by A, it can be proven that A† is unique by arguing that A† is the
unique solution to the four Penrose equations

AA†A = A, A†AA† = A†,

(
AA†)T = AA†,

(
A†A

)T = A†A,

so A† is the same matrix defined in Exercise 4.5.20. Since it doesn’t matter
which URV factorization is used, we can use the SVD (5.12.2), in which case
C = D = diag (σ1, . . . , σr). Some “inverselike” properties that relate A† to
solutions and least squares solutions for linear systems are given in the following
summary. Other useful properties appear in the exercises.
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Moore–Penrose Pseudoinverse
• In terms of URV factors, the Moore–Penrose pseudoinverse of

Am×n= U
(

Cr×r 0
0 0

)
VT is A†

n×m= V
(

C−1 0
0 0

)
UT . (5.12.16)

• When Ax = b is consistent, x = A†b is the solution
of minimal euclidean norm.

(5.12.17)

• When Ax = b is inconsistent, x = A†b is the least
squares solution of minimal euclidean norm.

(5.12.18)

• When an SVD is used, C = D = diag (σ1, . . . , σr), so

A† = V
(

D−1 0
0 0

)
UT =

r∑

i=1

viuT
i

σi
and A†b =

r∑

i=1

(
uT

i b
)

σi
vi.

Proof. To prove (5.12.17), suppose Ax0 = b, and replace A by AA†A to
write b = Ax0 = AA†Ax0 = AA†b. Thus A†b solves Ax = b when it is
consistent. To see that A†b is the solution of minimal norm, observe that the
general solution is A†b+N (A) (a particular solution plus the general solution of
the homogeneous equation), so every solution has the form z = A†b+n, where
n ∈ N (A). It’s not difficult to see that A†b ∈ R

(
A†) = R

(
AT

)
(Exercise

5.12.16), so A†b ⊥ n. Therefore, by the Pythagorean theorem (Exercise 5.4.14),

∥z∥2
2 =

∥∥A†b + n
∥∥2

2
=

∥∥A†b
∥∥2

2
+ ∥n∥2

2 ≥
∥∥A†b

∥∥2

2
.

Equality is possible if and only if n = 0, so A†b is the unique minimum
norm solution. When Ax = b is inconsistent, the least squares solutions are the
solutions of the normal equations AT Ax = AT b, and it’s straightforward to
verify that A†b is one such solution (Exercise 5.12.16(c)). To prove that A†b
is the least squares solution of minimal norm, apply the same argument used in
the consistent case to the normal equations.

Caution! Generalized inverses are useful in formulating theoretical statements
such as those above, but, just as in the case of the ordinary inverse, generalized
inverses are not practical computational tools. In addition to being computation-
ally inefficient, serious numerical problems result from the fact that A† need
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not be a continuous function of the entries of A. For example,

A(x) =
(

1 0
0 x

)
=⇒ A†(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1 0
0 1/x

)
for x ̸= 0,

(
1 0
0 0

)
for x = 0.

Not only is A†(x) discontinuous in the sense that limx→0 A†(x) ̸= A†(0), but
it is discontinuous in the worst way because as A(x) comes closer to A(0) the
matrix A†(x) moves farther away from A†(0). This type of behavior translates
into insurmountable computational difficulties because small errors due to round-
off (or anything else) can produce enormous errors in the computed A†, and as
errors in A become smaller the resulting errors in A† can become greater. This
diabolical fact is also true for the Drazin inverse (p. 399). The inherent numeri-
cal problems coupled with the fact that it’s extremely rare for an application to
require explicit knowledge of the entries of A† or AD constrains them to being
theoretical or notational tools. But don’t underestimate this role—go back and
read Laplace’s statement quoted in the footnote on p. 81.

Example 5.12.6
Another way to view the URV or SVD factorizations in relation to the Moore–
Penrose inverse is to consider A/R(AT )

and A†
/R(A)

, the restrictions of A and

A† to R
(
AT

)
and R (A), respectively. Begin by making the straightforward

observations that R
(
A†) = R

(
AT

)
and N

(
A†) = N

(
AT

)
(Exercise 5.12.16).

Since ℜn = R
(
AT

)
⊕N (A) and ℜm = R (A) ⊕N

(
AT

)
, it follows that

R (A) = A(ℜn) = A(R
(
AT

)
) and R

(
AT

)
= R

(
A†) = A†(ℜm) = A†(R (A)).

In other words, A/R(AT )
and A†

/R(A)
are linear transformations such that

A/R(AT )
: R

(
AT

)
→ R (A) and A†

/R(A)
: R (A) → R

(
AT

)
.

If B = {u1,u2, . . . ,ur} and B′ = {v1,v2, . . . ,vr} are the first r columns
from U =

(
U1 |U2

)
and V =

(
V1 |V2

)
in (5.11.11), then AV1 = U1C and

A†U1 = V1C−1 implies (recall (4.7.4)) that

[
A/R(AT )

]

B′B
= C and

[
A†

/R(A)

]

BB′
= C−1. (5.12.19)

If left-hand and right-hand singular vectors from the SVD (5.12.2) are used in
B and B′, respectively, then C = D = diag (σ1, . . . , σr). Thus (5.12.19) reveals
the exact sense in which A and A† are “inverses.” Compare these results with
the analogous statements for the Drazin inverse in Example 5.10.5 on p. 399.
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Exercises for section 5.12

5.12.1. Following the derivation in the text, find an SVD for

C =
(
−4 −6

3 −8

)
.

5.12.2. If σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of A, then it can
be shown that the function νk(A) =

(
σ2

1 + σ2
2 + · · · + σ2

k

)1/2 defines a
unitarily invariant norm (recall Exercise 5.6.9) for ℜm×n (or Cm×n)
for each k = 1, 2, . . . , r. Explain why the 2-norm and the Frobenius
norm (p. 279) are the extreme cases in the sense that ∥A∥2

2 = σ2
1 and

∥A∥2
F = σ2

1 + σ2
2 + · · · + σ2

r .

5.12.3. Each of the four common matrix norms can be bounded above and below
by a constant multiple of each of the other matrix norms. To be precise,
∥A∥i ≤ α ∥A∥j , where α is the (i, j)-entry in the following matrix.

⎛

⎜⎜⎝

1 2 ∞ F

1 ∗
√

n n
√

n
2

√
n ∗

√
n 1

∞ n
√

n ∗
√

n
F

√
n

√
n

√
n ∗

⎞

⎟⎟⎠.

For analyzing limiting behavior, it therefore makes no difference which
of these norms is used, so they are said to be equivalent matrix norms. (A
similar statement for vector norms was given in Exercise 5.1.8.) Explain
why the (2, F ) and the (F, 2) entries are correct.

5.12.4. Prove that if σ1 ≥ σ2 ≥ · · · ≥ σr are the nonzero singular values of a
rank r matrix A, and if ∥E∥2 < σr, then rank (A + E) ≥ rank (A).
Note: This clarifies the meaning of the term “sufficiently small” in the
assertion on p. 216 that small perturbations can’t reduce rank.

5.12.5. Image of the Unit Sphere. Extend the result on p. 414 concerning
the image of the unit sphere to include singular and rectangular matrices
by showing that if σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the nonzero singular
values of Am×n, then the image A(S2) ⊂ ℜm of the unit 2-sphere
S2 ⊂ ℜn is an ellipsoid (possibly degenerate) in which the kth semiaxis
is σkU∗k = AV∗k, where U∗k and V∗k are respective left-hand and
right-hand singular vectors for A.
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5.12.6. Prove that if σr is the smallest nonzero singular value of Am×n, then

σr = min
∥x∥2=1

x∈R(AT )

∥Ax∥2 = 1/
∥∥A†∥∥

2
,

which is the generalization of (5.12.5).

5.12.7. Generalized Condition Number. Extend the bound in (5.12.8) to
include singular and rectangular matrices by showing that if x and
x̃ are the respective minimum 2-norm solutions of consistent systems
Ax = b and Ax̃ = b̃ = b − e, then

κ−1 ∥e∥
∥b∥ ≤ ∥x − x̃∥

∥x∥ ≤ κ
∥e∥
∥b∥ , where κ = ∥A∥

∥∥A†∥∥ .

Can the same reasoning given in Example 5.12.1 be used to argue that
for ∥ ⋆∥2, the upper and lower bounds are attainable for every A?

5.12.8. Prove that if |ϵ| < σ2
r for the smallest nonzero singular value of Am×n,

then (AT A + ϵI)−1 exists, and limϵ→0 (AT A + ϵI)−1AT = A†.

5.12.9. Consider a system Ax = b in which

A =
(

.835 .667

.333 .266

)
,

and suppose b is subject to an uncertainty e. Using ∞-norms, deter-
mine the directions of b and e that give rise to the worst-case scenario
in (5.12.8) in the sense that ∥x − x̃∥∞ / ∥x∥∞ = κ∞∥e∥∞ / ∥b∥∞.

5.12.10. An ill-conditioned matrix is suspected when a small pivot uii emerges
during the LU factorization of A because

[
U−1

]
ii

= 1/uii is then
large, and this opens the possibility of A−1 = U−1L−1 having large
entries. Unfortunately, this is not an absolute test, and no guarantees
about conditioning can be made from the pivots alone.

(a) Construct an example of a matrix that is well conditioned but
has a small pivot.

(b) Construct an example of a matrix that is ill conditioned but has
no small pivots.
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5.12.11. Bound the relative uncertainty in the solution of a nonsingular system
Ax = b for which there is some uncertainty in A but not in b by
showing that if (A−E)x̃ = b, where α =

∥∥A−1E
∥∥ < 1 for any matrix

norm such that ∥I∥ = 1, then

∥x − x̃∥
∥x∥ ≤ κ

1 − α

∥E∥
∥A∥ , where κ = ∥A∥

∥∥A−1
∥∥ .

Note: If the 2-norm is used, then ∥E∥2 < σn insures α < 1.
Hint: If B = A−1E, then A − E = A(I − B), and α = ∥B∥ < 1
=⇒

∥∥Bk
∥∥ ≤ ∥B∥k → 0 =⇒ Bk → 0, so the Neumann series

expansion (p. 126) yields (I − B)−1 =
∑∞

i=0 Bi.

5.12.12. Now bound the relative uncertainty in the solution of a nonsingular
system Ax = b for which there is some uncertainty in both A and b
by showing that if (A−E)x̃ = b− e, where α =

∥∥A−1E
∥∥ < 1 for any

matrix norm such that ∥I∥ = 1, then

∥x − x̃∥
∥x∥ ≤ κ

1 − κ ∥E∥ / ∥A∥

(
∥e∥
∥b∥ +

∥E∥
∥A∥

)
, where κ = ∥A∥

∥∥A−1
∥∥ .

Note: If the 2-norm is used, then ∥E∥2 < σn insures α < 1. This
exercise underscores the conclusion of Example 5.12.1 stating that if A
is well conditioned, and if the relative uncertainties in A and b are
small, then the relative uncertainty in x must be small.

5.12.13. Consider the matrix A =

(−4 −2 −4 −2
2 −2 2 1

−4 1 −4 −2

)
.

(a) Use the URV factorization you computed in Exercise 5.11.8 to
determine A†.

(b) Now use the URV factorization you obtained in Exercise 5.11.9
to determine A†. Do your results agree with those of part (a)?

5.12.14. For matrix A in Exercise 5.11.8, and for b = (−12 3 −9 )T , find
the solution of Ax = b that has minimum euclidean norm.

5.12.15. Suppose A = URVT is a URV factorization (so it could be an SVD)
of an m × n matrix of rank r, and suppose U is partitioned as U =(
U1 |U2

)
, where U1 is m × r. Prove that P = U1UT

1 = AA† is the
projector onto R (A) along N

(
AT

)
. In this case, P is said to be an or-

thogonal projector because its range is orthogonal to its nullspace. What
is the orthogonal projector onto N

(
AT

)
along R (A)? (Orthogonal

projectors are discussed in more detail on p. 429.)
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5.12.16. Establish the following properties of A†.
(a) A† = A−1 when A is nonsingular.

(b) (A†) † = A.

(c) (A†) T = (AT ) †
.

(d) A† =
{

(AT A)−1AT when rank (Am×n) = n,
AT (AAT )−1 when rank (Am×n) = m.

(e) AT = AT AA† = A†AAT for all A ∈ ℜm×n.

(f) A† = AT (AAT )† = (AT A)†AT for all A ∈ ℜm×n.

(g) R
(
A†) = R

(
AT

)
= R

(
A†A

)
, and

N
(
A†) = N

(
AT

)
= N

(
AA†).

(h) (PAQ)† = QT A†PT when P and Q are orthogonal matrices,
but in general (AB)† ̸= B†A† (the reverse-order law fails).

(i) (AT A)† = A†(AT )† and (AAT )† = (AT )†A†.

5.12.17. Explain why A† = AD if and only if A is an RPN matrix.

5.12.18. Let X, Y ∈ ℜm×n be such that R (X) ⊥ R (Y).
(a) Establish the Pythagorean theorem for matrices by proving

∥X + Y∥2
F = ∥X∥2

F + ∥Y∥2
F .

(b) Give an example to show that the result of part (a) does not
hold for the matrix 2-norm.

(c) Demonstrate that A† is the best approximate inverse for A
in the sense that A† is the matrix of smallest Frobenius norm
that minimizes ∥I − AX∥F .
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real symmetric, try to find an example with real numbers. If A =
(

a b
c d

)
,

then

AAT =
(

a2 + b2 ac + bd
ac + bd c2 + d2

)
and AT A =

(
a2 + c2 ab + cd
ab + cd b2 + d2

)
,

so we need to have b2 = c2. One such matrix is A =
(

1 −1
1 1

)
. To construct

a singular matrix that is RPN but not normal, try again to find an example with
real numbers. For any orthogonal matrix P and nonsingular matrix C, the

matrix A = P
(

C 0
0 0

)
PT is RPN. To prevent A from being normal, simply

choose C to be nonnormal. For example, let C =
(

1 2
3 4

)
and P = I.

5.11.14. (a) A∗A = AA∗ =⇒ (A− λI)∗ (A− λI) = (A− λI) (A− λI)∗ =⇒
(A− λI) is normal =⇒ (A− λI) is RPN =⇒ R (A− λI)⊥N (A− λI) .

(b) Suppose x ∈ N (A− λI) and y ∈ N (A− µI), and use the fact that
N (A− λI) = N (A− λI)∗ to write

(A− λI)x = 0 =⇒ 0 = x∗ (A− λI) =⇒ 0 = x∗ (A− λI)y
= x∗(µy − λy) = x∗y(µ− λ) =⇒ x∗y = 0.

Solutions for exercises in section 5. 12

5.12.1. Since CT C =
(

25 0
0 100

)
, σ2

1 = 100, and it’s clear that x = e2 is a vector

such that (CT C − 100I)x = 0 and ∥x∥2 = 1. Let y = Cx/σ1 =
(
−3/5
−4/5

)
.

Following the procedure in Example 5.6.3, set ux = x − e1 and uy = y − e1,
and construct

Rx = I− 2
uxuT

x

uT
x ux

=
(

0 1
1 0

)
and Ry = I− 2

uyuT
y

uT
y uy

=
(
−3/5 −4/5
−4/5 3/5

)
.

Since RyCRx =
(

10 0
0 5

)
= D, it follows that C = RyDRx is a singular

value decomposition of C.
5.12.2. ν2

1(A) = σ2
1 = ∥A∥22 needs no proof—it’s just a restatement of (5.12.4). The

fact that ν2
r (A) = ∥A∥2F amounts to observing that

∥A∥2F = trace
(
AT A

)
= traceV

(
D2 0
0 0

)
VT = trace

(
D2
)

= σ2
1 + · · · + σ2

r .
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5.12.3. If σ1 ≥ · · · ≥ σr are the nonzero singular values for A, then it follows from
Exercise 5.12.2 that ∥A∥22 = σ2

1 ≤ σ2
1 + σ2

2 + · · · + σ2
r = ∥A∥2F ≤ nσ2

1 = n∥A∥22.
5.12.4. If rank (A + E) = k < r, then (5.12.10) implies that

∥E∥2 = ∥A− (A + E)∥2 ≥ min
rank(B)=k

∥A−B∥2 = σk+1 ≥ σr,

which is impossible. Hence rank (A + E) ≥ r = rank (A).
5.12.5. The argument is almost identical to that given for the nonsingular case except

that A† replaces A−1. Start with SVDs

A = U
(

D 0
0 0

)
VT and A† = V

(
D−1 0
0 0

)
UT ,

where D = diag (σ1, σ2, . . . , σr) , and note that
∥∥A†Ax

∥∥
2
≤
∥∥A†A

∥∥
2
∥x∥2 = 1

with equality holding when A†A = I (i.e., when r = n ). For each y ∈ A(S2)
there is an x ∈ S2 such that y = Ax, so, with w = UT y,

1 ≥
∥∥A†Ax

∥∥2

2
=
∥∥A†y

∥∥2

2
=
∥∥VD−1UT y

∥∥2

2
=
∥∥D−1UT y

∥∥2

2

=
∥∥D−1w

∥∥2

2
=

w2
1

σ2
1

+
w2

2

σ2
2

+ · · · + w2
r

σ2
r

with equality holding when r = n. In other words, the set UT A(S2) is an
ellipsoid (degenerate if r < n ) whose kth semiaxis has length σk. To resolve
the inequality with what it means for points to be on an ellipsoid, realize that the
surface of a degenerate ellipsoid (one having some semiaxes with zero length) is
actually the set of all points in and on a smaller dimension ellipsoid. For example,
visualize an ellipsoid in ℜ3 , and consider what happens as one of its semiaxes
shrinks to zero. The skin of the three-dimensional ellipsoid degenerates to a solid
planar ellipse. In other words, all points on a degenerate ellipsoid with semiaxes
of length σ1 ̸= 0, σ2 ̸= 0, σ3 = 0 are actually points on and inside a planar
ellipse with semiaxes of length σ1 and σ2. Arguing that the kth semiaxis of
A(S2) is σkU∗k = AV∗k is the same as the nonsingular case given in the text.

5.12.6. If A = U
(

D 0
0 0

)
VT and A†

n×m = V
(

D−1 0
0 0

)
UT are SVDs in which

V =
(
V1 |V2

)
, then the columns of V1 are an orthonormal basis for R

(
AT
)
,

so x ∈ R
(
AT
)

and ∥x∥2 = 1 if and only if x = V1y with ∥y∥2 = 1. Since
the 2-norm is unitarily invariant (Exercise 5.6.9),

min
∥x∥2=1

x∈R(AT )

∥Ax∥2 = min
∥y∥2=1

∥AV1y∥2 = min
∥y∥2=1

∥Dy∥2 =
1

∥D−1∥2
= σr =

1
∥A†∥2

.



Solutions 99

5.12.7. x = A†b and x̃ = A†(b− e) are the respective solutions of minimal 2-norm of
Ax = b and Ax̃ = b̃ = b− e. The development of the more general bound is
the same as for (5.12.8).

∥x− x̃∥ = ∥A†(b− b̃)∥ ≤ ∥A†∥ ∥b− b̃∥,
b = Ax =⇒ ∥b∥ ≤ ∥A∥ ∥x∥ =⇒ 1/∥x∥ ≤ ∥A∥/∥b∥,

so
∥x− x̃∥
∥x∥ ≤

(
∥A†∥ ∥b− b̃∥

) ∥A∥
∥b∥ = κ

∥e∥
∥b∥ .

Similarly,

∥b− b̃∥ = ∥A(x− x̃)∥ ≤ ∥A∥ ∥x− x̃∥,
x = A†b =⇒ ∥x∥ ≤ ∥A†∥ ∥b∥ =⇒ 1/∥b∥ ≤ ∥A†∥/∥x∥,

so
∥b− b̃∥
∥b∥ ≤ (∥A∥ ∥x− x̃∥) ∥A

†∥
∥x∥ = κ

∥x− x̃∥
∥x∥ .

Equality was attained in Example 5.12.1 by choosing b and e to point in
special directions. But for these choices, Ax = b and Ax̃ = b̃ = b− e cannot
be guaranteed to be consistent for all singular or rectangular matrices A, so
the answer to the second part is “no.” However, the argument of Example 5.12.1
proves equality for all A such that AA† = I (i.e., when rank (Am×n) = m ).

5.12.8. If A = U
(

D 0
0 0

)
VT is an SVD, then AT A+ ϵI = U

(
D2 + ϵI 0

0 ϵI

)
VT is

an SVD with no zero singular values, so it’s nonsingular. Furthermore,

(AT A + ϵI)−1AT = U
(

(D2 + ϵI)−1D 0
0 0

)
VT → U

(
D−1 0
0 0

)
VT = A†.

5.12.9. Since A−1 =
(
−266000 667000

333000 −835000

)
, κ∞ = ∥A∥∞

∥∥A−1
∥∥
∞ = 1, 754, 336.

Similar to the 2-norm situation discussed in Example 5.12.1, the worst case is
realized when b is in the direction of a maximal vector in A(S∞) while e is
in the direction of a minimal vector in A(S∞). Sketch A(S∞) as shown below
to see that v = ( 1.502 .599 )T is a maximal vector in A(S∞).
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(.168, .067)

(-.168, -.067)

(-1.502, -.599)

(1.502, .599)

(1, -1)(-1, -1)

(-1, 1) (1, 1)

A

It’s not clear which vector is minimal—don’t assume ( .168 .067 )T is. A min-
imal vector y in A(S∞) satisfies ∥y∥∞ = min∥x∥∞=1 ∥Ax∥∞ = 1/

∥∥A−1
∥∥
∞

(see (5.2.6) on p. 280), so, for y = Ax0 with ∥x0∥∞ = 1,

∥∥∥∥A
−1

(
y
∥y∥∞

)∥∥∥∥
∞

=
∥x0∥∞
∥y∥∞

=
1
∥y∥∞

=
∥∥A−1

∥∥
∞ = max

∥z∥∞=1

∥∥A−1z
∥∥
∞ .

In other words, ŷ = y/ ∥y∥∞ must be a vector in S∞ that receives maximal
stretch under A−1. You don’t have to look very hard to find such a vector
because its components are ± 1—recall the proof of (5.2.15) on p. 283. Notice
that ŷ = ( 1 −1 )T ∈ S∞, and ŷ receives maximal stretch under A−1 because∥∥A−1y

∥∥
∞ = 1, 168, 000 =

∥∥A−1
∥∥
∞ , so setting

b = αv = α

(
1.502
.599

)
and e = βŷ = β

(
1
−1

)

produces equality in (5.12.8), regardless of α and β. You may wish to compu-
tationally verify that this is indeed the case.

5.12.10. (a) Consider A =
(

ϵ −1
1 0

)
or A =

(
ϵ ϵn

0 ϵ

)
for small ϵ ̸= 0.

(b) For α > 1, consider

A =

⎛

⎜⎜⎜⎜⎝

1 −α 0 · · · 0
0 1 −α · · · 0
...

...
. . . . . .

...
0 0 · · · 1 −α
0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎠

n×n

and A−1 =

⎛

⎜⎜⎜⎜⎝

1 α · · · αn−2 αn−1

0 1 · · · αn−3 αn−2

...
...

. . .
...

...
0 0 · · · 1 α
0 0 · · · 0 1

⎞

⎟⎟⎟⎟⎠
.

Regardless of which norm is used, ∥A∥ > α and
∥∥A−1

∥∥ > αn−1, so κ > αn

exhibits exponential growth. Even for moderate values of n and α > 1, κ can
be quite large.
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5.12.11. For B = A−1E, write (A − E) = A(I − B), and use the Neumann series
expansion to obtain

x̃ = (A−E)−1b = (I−B)−1A−1b = (I+B+B2+· · ·)x = x+B(I+B+B2+· · ·)x.

Therefore, ∥x− x̃∥ ≤ ∥B∥
∑∞

n=0 ∥B∥
n ∥x∥ ≤

∥∥A−1
∥∥ ∥E∥ ∥x∥

∑∞
n=0 αn, so

∥x− x̃∥
∥x∥ ≤

∥∥A−1
∥∥ ∥E∥ 1

1− α
= ∥A∥

∥∥A−1
∥∥ ∥E∥
∥A∥

1
1− α

=
κ

1− α

∥E∥
∥A∥ .

5.12.12. Begin with

x− x̃ = x− (I−B)−1A−1(b− e) =
(
I− (I−B)−1

)
x + (I−B)−1A−1e.

Use the triangle inequality with b = Ax⇒ 1/ ∥x∥ ≤ ∥A∥ / ∥b∥ to obtain

∥x− x̃∥
∥x∥ ≤

∥∥I− (I−B)−1
∥∥+

∥∥(I−B)−1
∥∥κ
∥e∥
∥b∥ .

Write (I−B)−1 =
∑∞

i=0 Bi, and use the identity I−(I−B)−1 = −B(I−B)−1

to produce

∥∥(I−B)−1
∥∥ ≤

∞∑

i=0

∥B∥i =
1

1− ∥B∥ and
∥∥I− (I−B)−1

∥∥ ≤ ∥B∥
1− ∥B∥ .

Now combine everything above with ∥B∥ ≤
∥∥A−1

∥∥ ∥E∥ = κ ∥E∥ / ∥A∥ .
5.12.13. Even though the URV factors are not unique, A† is, so in each case you should

arrive at the same matrix

A† = VR†UT =
1
81

⎛

⎜⎝

−4 2 −4
−18 −18 9
−4 2 −4
−2 1 −2

⎞

⎟⎠ .

5.12.14. By (5.12.17), the minimum norm solution is A†b = (1/9) ( 10 9 10 5 )T .
5.12.15. U is a unitary matrix in which the columns of U1 are an orthonormal basis for

R (A) and the columns of U2 are an orthonormal basis for N
(
AT
)
, so setting

X = U1, Y = U2, and
[
X |Y

]−1 = UT in (5.9.12) produces P = U1UT
1 .

Furthermore,

AA† = U
(

C 0
0 0

)
VT V

(
C−1 0
0 0

)
UT = U

(
I 0
0 0

)
UT = U1UT

1 .

According to (5.9.9), the projector onto N
(
AT
)

along R (A) is I − P = I −
U1UT

1 = U2UT
2 = I−AA†.
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5.12.16. (a) When A is nonsingular, U = V = I and R = A, so A† = A−1.

(b) If A = URVT is as given in (5.12.16), where R =
(

C 0
0 0

)
, it is clear

that (R†) † = R, and hence (A†) † = (VR†UT )† = U(R†) † VT = URVT =
A.

(c) For R as above, it is easy to see that (R†) T = (RT ) †
, so an argument

similar to that used in part (b) leads to (A†) T = (AT ) †
.

(d) When rank (Am×n) = n, an SVD must have the form

A = Um×m

(
Dn×n

0m−n×n

)
In×n, so A† = I (D−1 0 )UT .

Furthermore, AT A = D2, and (AT A)−1AT = I (D−1 0 )UT = A†. The
other part is similar.

(e) AT AA† = V
(

CT 0
0 0

)
UT U

(
Cr×r 0

0 0

)
VT V

(
C−1 0
0 0

)
UT = AT .

The other part is similar.
(f) Use an SVD to write

AT (AAT )† = V
(

DT 0
0 0

)
UT U

(
D−2 0
0 0

)
UT = V

(
D−1 0
0 0

)
UT = A†.

The other part is similar.
(g) The URV factorization insures that rank

(
A†) = rank (A) = rank

(
AT
)
,

and part (f) implies R
(
A†) ⊆ R

(
AT
)
, so R

(
A†) = R

(
AT
)
. Argue that

R
(
AT
)

= R
(
A†A

)
by using Exercise 5.12.15. The other parts are similar.

(h) If A = URVT is a URV factorization for A, then (PU)R(QT V)T is a
URV factorization for B = PAQ. So, by (5.12.16), we have

B† = QT V
(

C−1 0
0 0

)
UT PT = QT A†PT .

Almost any two singular or rectangular matrices can be used to build a coun-
terexample to show that (AB)† is not always the same as B†A†.

(i) If A = URVT , then (AT A)† = (VRT UT URV)† = VT (RT R)†VT . Sim-
ilarly, A†(AT )† = VR†UT URT †VT = VR†RT †VT = VT (RT R)†VT . The
other part is argued in the same way.

5.12.17. If A is RPN, then index(A) = 1, and the URV decomposition (5.11.15) is a
similarity transformation of the kind (5.10.5). That is, N = 0 and Q = U, so
AD as defined in (5.10.6) is the same as A† as defined by (5.12.16). Conversely,
if A† = AD, then

AAD = ADA =⇒ A†A = AA† =⇒ R (A) = R
(
AT
)
.
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5.12.18. (a) Recall that ∥B∥2F = trace
(
BT B

)
, and use the fact that R (X) ⊥R (Y)

implies XT Y = 0 = YT X to write

∥X + Y∥2F = trace
(
(X + Y)T (X + Y)

)

= trace
(
XT X + XT Y + YT X + YT Y

)

= trace
(
XT X

)
+ trace

(
YT Y

)
= ∥X∥2F + ∥Y∥2F .

(b) Consider X =
(

2 0
0 0

)
and Y =

(
0 0
0 3

)
.

(c) Use the result of part (a) to write

∥I−AX∥2F =
∥∥I−AA† + AA† −AX

∥∥2

F

=
∥∥I−AA†∥∥2

F
+
∥∥AA† −AX

∥∥2

F

≥
∥∥I−AA†∥∥2

F
,

with equality holding if and only if AX = AA†—i.e., if and only if X = A†+Z,
where R (Z)⊆N (A)⊥R

(
AT
)

= R
(
A†). Moreover, for any such X,

∥X∥2F =
∥∥A† + Z

∥∥2

F
=
∥∥A†∥∥2

F
+ ∥Z∥2F ≥

∥∥A†∥∥2

F

with equality holding if and only if Z = 0.

Solutions for exercises in section 5. 13

5.13.1. PM = uuT /(uT u) = (1/10)

(
9 3
3 1

)
, and PM⊥ = I−PM = (1/10)

(
1 −3

−3 9

)
,

so PMb =
(

6
2

)
, and PM⊥b =

(
−2

6

)
.

5.13.2. (a) Use any of the techniques described in Example 5.13.3 to obtain the fol-
lowing.

PR(A) =

⎛

⎝
.5 0 .5
0 1 0
.5 0 .5

⎞

⎠ PN(A) =

⎛

⎝
.8 −.4 0
−.4 .2 0

0 0 0

⎞

⎠

PR(AT ) =

⎛

⎝
.2 .4 0
.4 .8 0
0 0 1

⎞

⎠ PN(AT ) =

⎛

⎝
.5 0 −.5
0 0 0

−.5 0 .5

⎞

⎠

(b) The point in N (A)⊥ that is closest to b is

PN(A)⊥b = PR(AT )b =

⎛

⎝
.6
1.2
1

⎞

⎠ .


