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5.2 MATRIX NORMS

Because Cm×n is a vector space of dimension mn, magnitudes of matrices
A ∈ Cm×n can be “measured” by employing any vector norm on Cmn. For
example, by stringing out the entries of A =

(

2 −1
−4 −2

)

into a four-component
vector, the euclidean norm on ℜ4 can be applied to write

∥A∥ =
[

22 + (−1)2 + (−4)2 + (−2)2
]1/2 = 5.

This is one of the simplest notions of a matrix norm, and it is called the Frobenius
(p. 662) norm (older texts refer to it as the Hilbert–Schmidt norm or the Schur
norm). There are several useful ways to describe the Frobenius matrix norm.

Frobenius Matrix Norm
The Frobenius norm of A ∈ Cm×n is defined by the equations

∥A∥2
F =

∑

i,j

|aij |2 =
∑

i

∥Ai∗∥2
2 =

∑

j

∥A∗j∥2
2 = trace (A∗A). (5.2.1)

The Frobenius matrix norm is fine for some problems, but it is not well suited
for all applications. So, similar to the situation for vector norms, alternatives need
to be explored. But before trying to develop different recipes for matrix norms, it
makes sense to first formulate a general definition of a matrix norm. The goal is
to start with the defining properties for a vector norm given in (5.1.9) on p. 275
and ask what, if anything, needs to be added to that list.

Matrix multiplication distinguishes matrix spaces from more general vector
spaces, but the three vector-norm properties (5.1.9) say nothing about products.
So, an extra property that relates ∥AB∥ to ∥A∥ and ∥B∥ is needed. The
Frobenius norm suggests the nature of this extra property. The CBS inequality
insures that ∥Ax∥2

2 =
∑

i |Ai∗x|2 ≤
∑

i ∥Ai∗∥2
2 ∥x∥

2
2 = ∥A∥2

F ∥x∥2
2 . That is,

∥Ax∥2 ≤ ∥A∥F ∥x∥2 , (5.2.2)

and we express this by saying that the Frobenius matrix norm ∥⋆∥F and the
euclidean vector norm ∥⋆∥2 are compatible . The compatibility condition (5.2.2)
implies that for all conformable matrices A and B,

∥AB∥2
F =

∑

j

∥[AB]∗j∥2
2 =

∑

j

∥AB∗j∥2
2 ≤

∑

j

∥A∥2
F ∥B∗j∥2

2

= ∥A∥2
F

∑

j

∥B∗j∥2
2 = ∥A∥2

F ∥B∥2
F =⇒ ∥AB∥F ≤ ∥A∥F ∥B∥F .

This suggests that the submultiplicative property ∥AB∥ ≤ ∥A∥ ∥B∥ should be
added to (5.1.9) to define a general matrix norm.
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General Matrix Norms
A matrix norm is a function ∥⋆∥ from the set of all complex matrices
(of all finite orders) into ℜ that satisfies the following properties.

∥A∥ ≥ 0 and ∥A∥ = 0 ⇐⇒ A = 0.

∥αA∥ = |α| ∥A∥ for all scalars α.

∥A + B∥ ≤ ∥A∥ + ∥B∥ for matrices of the same size.
∥AB∥ ≤ ∥A∥ ∥B∥ for all conformable matrices.

(5.2.3)

The Frobenius norm satisfies the above definition (it was built that way),
but where do other useful matrix norms come from? In fact, every legitimate
vector norm generates (or induces) a matrix norm as described below.

Induced Matrix Norms
A vector norm that is defined on Cp for p = m, n induces a matrix
norm on Cm×n by setting

∥A∥ = max
∥x∥=1

∥Ax∥ for A ∈ Cm×n, x ∈ Cn×1. (5.2.4)

The footnote on p. 276 explains why this maximum value must exist.

• It’s apparent that an induced matrix norm is compatible with its
underlying vector norm in the sense that

∥Ax∥ ≤ ∥A∥ ∥x∥ . (5.2.5)

• When A is nonsingular, min
∥x∥=1

∥Ax∥ =
1

∥A−1∥ . (5.2.6)

Proof. Verifying that max∥x∥=1 ∥Ax∥ satisfies the first three conditions in
(5.2.3) is straightforward, and (5.2.5) implies ∥AB∥ ≤ ∥A∥ ∥B∥ (see Exercise
5.2.5). Property (5.2.6) is developed in Exercise 5.2.7.

In words, an induced norm ∥A∥ represents the maximum extent to which
a vector on the unit sphere can be stretched by A, and 1/

∥∥A−1
∥∥ measures the

extent to which a nonsingular matrix A can shrink vectors on the unit sphere.
Figure 5.2.1 depicts this in ℜ3 for the induced matrix 2-norm.
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1

max
∥x∥=1

∥Ax∥ = ∥A∥

min
∥x∥=1

∥Ax∥ =
1

∥A -1∥

A

Figure 5.2.1. The induced matrix 2-norm in ℜ3.

Intuition might suggest that the euclidean vector norm should induce the
Frobenius matrix norm (5.2.1), but something surprising happens instead.

Matrix 2-Norm

• The matrix norm induced by the euclidean vector norm is

∥A∥2 = max
∥x∥2=1

∥Ax∥2 =
√

λmax, (5.2.7)

where λmax is the largest number λ such that A∗A−λI is singular.

• When A is nonsingular,

∥

∥A−1
∥

∥

2
=

1
min

∥x∥2=1
∥Ax∥2

=
1√
λmin

, (5.2.8)

where λmin is the smallest number λ such that A∗A−λI is singular.

Note: If you are already familiar with eigenvalues, these say that λmax

and λmin are the largest and smallest eigenvalues of A∗A (Example
7.5.1, p. 549), while (λmax)1/2 = σ1 and (λmin)1/2 = σn are the largest
and smallest singular values of A (p. 414).

Proof. To prove (5.2.7), assume that Am×n is real (a proof for complex ma-
trices is given in Example 7.5.1 on p. 549). The strategy is to evaluate ∥A∥2

2 by
solving the problem

maximize f(x) = ∥Ax∥2
2 = xT AT Ax subject to g(x) = xT x = 1
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using the method of Lagrange multipliers. Introduce a new variable λ (the
Lagrange multiplier), and consider the function h(x, λ) = f(x) − λg(x). The
points at which f is maximized are contained in the set of solutions to the
equations ∂h/∂xi = 0 (i = 1, 2, . . . , n) along with g(x) = 1. Differentiating
h with respect to the xi ’s is essentially the same as described on p. 227, and
the system generated by ∂h/∂xi = 0 (i = 1, 2, . . . , n) is (AT A − λI)x = 0. In
other words, f is maximized at a vector x for which (AT A − λI)x = 0 and
∥x∥2 = 1. Consequently, λ must be a number such that AT A− λI is singular
(because x ̸= 0 ). Since

xT AT Ax = λxT x = λ,

it follows that

∥A∥2 = max
∥x∥=1

∥Ax∥ = max
∥x∥2=1

∥Ax∥ =
(

max
xT x=1

xT AT Ax
)1/2

=
√

λmax,

where λmax is the largest number λ for which AT A−λI is singular. A similar
argument applied to (5.2.6) proves (5.2.8). Also, an independent development of
(5.2.7) and (5.2.8) is contained in the discussion of singular values on p. 412.

Example 5.2.1
Problem: Determine the induced norm ∥A∥2 as well as ∥A−1∥2 for the non-
singular matrix

A =
1√
3

( 3 −1
0

√
8

)
.

Solution: Find the values of λ that make AT A − λI singular by applying
Gaussian elimination to produce

AT A − λI =
(

3 − λ −1
−1 3 − λ

)
−→

(
−1 3 − λ

3 − λ −1

)
−→

(
−1 3 − λ
0 −1 + (3 − λ)2

)
.

This shows that AT A−λI is singular when −1+(3−λ)2 = 0 or, equivalently,
when λ = 2 or λ = 4, so λmin = 2 and λmax = 4. Consequently, (5.2.7) and
(5.2.8) say that

∥A∥2 =
√

λmax = 2 and ∥A−1∥2 =
1√
λmin

=
1√
2
.

Note: As mentioned earlier, the values of λ that make AT A − λI singular
are called the eigenvalues of AT A, and they are the focus of Chapter 7 where
their determination is discussed in more detail. Using Gaussian elimination to
determine the eigenvalues is not practical for larger matrices.

Some useful properties of the matrix 2-norm are stated below.
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Properties of the 2-Norm
In addition to the properties shared by all induced norms, the 2-norm
enjoys the following special properties.

• ∥A∥2 = max
∥x∥2=1

max
∥y∥2=1

|y∗Ax|. (5.2.9)

• ∥A∥2 = ∥A∗∥2. (5.2.10)

• ∥A∗A∥2 = ∥A∥2
2 . (5.2.11)

•
∥∥∥
(

A 0
0 B

)∥∥∥
2

= max
{
∥A∥2 , ∥B∥2

}
. (5.2.12)

• ∥U∗AV∥2 = ∥A∥2 when UU∗ = I and V∗V = I. (5.2.13)

You are asked to verify the validity of these properties in Exercise 5.2.6
on p. 285. Furthermore, some additional properties of the matrix 2-norm are
developed in Exercise 5.6.9 and on pp. 414 and 417.

Now that we understand how the euclidean vector norm induces the matrix
2-norm, let’s investigate the nature of the matrix norms that are induced by the
vector 1-norm and the vector ∞-norm.

Matrix 1-Norm and Matrix∞-Norm
The matrix norms induced by the vector 1-norm and ∞-norm are as
follows.

• ∥A∥1 = max
∥x∥1=1

∥Ax∥1 = max
j

∑

i

|aij |

= the largest absolute column sum.
(5.2.14)

• ∥A∥∞ = max
∥x∥∞=1

∥Ax∥∞ = max
i

∑

j

|aij |

= the largest absolute row sum.
(5.2.15)

Proof of (5.2.14). For all x with ∥x∥1 = 1, the scalar triangle inequality yields

∥Ax∥1 =
∑

i

∣∣Ai∗x
∣∣ =

∑

i

∣∣∣
∑

j

aijxj

∣∣∣ ≤
∑

i

∑

j

|aij | |xj | =
∑

j

(
|xj |

∑

i

|aij |
)

≤
( ∑

j

|xj |
)(

max
j

∑

i

|aij |
)

= max
j

∑

i

|aij | .
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Equality can be attained because if A∗k is the column with largest absolute sum,
set x = ek, and note that ∥ek∥1 = 1 and ∥Aek∥1 = ∥A∗k∥1 = maxj

∑
i |aij | .

Proof of (5.2.15). For all x with ∥x∥∞ = 1,

∥Ax∥∞ = max
i

∣∣∣
∑

j

aijxj

∣∣∣ ≤ max
i

∑

j

|aij | |xj | ≤ max
i

∑

j

|aij | .

Equality can be attained because if Ak∗ is the row with largest absolute sum,
and if x is the vector such that

xj =
{ 1 if akj ≥ 0,

−1 if akj < 0,
then

{
|Ai∗x| = |

∑
j aijxj | ≤

∑
j |aij | for all i,

|Ak∗x| =
∑

j |akj | = maxi
∑

j |aij | ,

so ∥x∥∞ = 1, and ∥Ax∥∞ = maxi |Ai∗x| = maxi
∑

j |aij | .

Example 5.2.2
Problem: Determine the induced matrix norms ∥A∥1 and ∥A∥∞ for

A =
1√
3

(
3 −1
0

√
8

)
,

and compare the results with ∥A∥2 (from Example 5.2.1) and ∥A∥F .

Solution: Equation (5.2.14) says that ∥A∥1 is the largest absolute column sum
in A, and (5.2.15) says that ∥A∥∞ is the largest absolute row sum, so

∥A∥1 = 1/
√

3 +
√

8/
√

3 ≈2.21 and ∥A∥∞ = 4/
√

3 ≈2.31.

Since ∥A∥2 = 2 (Example 5.2.1) and ∥A∥F =
√

trace (AT A) =
√

6 ≈2.45, we
see that while ∥A∥1, ∥A∥2, ∥A∥∞, and ∥A∥F are not equal, they are all in
the same ballpark. This is true for all n ×n matrices because it can be shown
that ∥A∥i ≤ α ∥A∥j , where α is the (i, j)-entry in the following matrix

⎛

⎜⎜⎝

1 2 ∞ F

1 ∗
√

n n
√

n
2

√
n ∗

√
n 1

∞ n
√

n ∗
√

n
F

√
n

√
n

√
n ∗

⎞

⎟⎟⎠

(see Exercise 5.1.8 and Exercise 5.12.3 on p. 425). Since it’s often the case that
only the order of magnitude of ∥A∥ is needed and not the exact value (e.g.,
recall the rule of thumb in Example 3.8.2 on p. 129), and since ∥A∥2 is difficult
to compute in comparison with ∥A∥1, ∥A∥∞, and ∥A∥F , you can see why any
of these three might be preferred over ∥A∥2 in spite of the fact that ∥A∥2 is
more “natural” by virtue of being induced by the euclidean vector norm.
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Exercises for section 5.2

5.2.1. Evaluate the Frobenius matrix norm for each matrix below.

A =
(

1 −2
−1 2

)
, B =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ , C =

⎛

⎝
4 −2 4

−2 1 −2
4 −2 4

⎞

⎠ .

5.2.2. Evaluate the induced 1-, 2-, and ∞-matrix norm for each of the three
matrices given in Exercise 5.2.1.

5.2.3. (a) Explain why ∥I∥ = 1 for every induced matrix norm (5.2.4).
(b) What is ∥In×n∥F ?

5.2.4. Explain why ∥A∥F = ∥A∗∥F for Frobenius matrix norm (5.2.1).

5.2.5. For matrices A and B and for vectors x, establish the following com-
patibility properties between a vector norm defined on every Cp and
the associated induced matrix norm.

(a) Show that ∥Ax∥ ≤ ∥A∥ ∥x∥ .

(b) Show that ∥AB∥ ≤ ∥A∥ ∥B∥ .

(c) Explain why ∥A∥ = max∥x∥≤1 ∥Ax∥ .

5.2.6. Establish the following properties of the matrix 2-norm.
(a) ∥A∥2 = max

∥x∥2=1
∥y∥2=1

|y∗Ax|,

(b) ∥A∥2 = ∥A∗∥2,

(c) ∥A∗A∥2 = ∥A∥2
2 ,

(d)
∥∥∥
(

A 0
0 B

)∥∥∥
2

= max
{
∥A∥2 , ∥B∥2

}
(take A, B to be real),

(e) ∥U∗AV∥2 = ∥A∥2 when UU∗ = I and V∗V = I.

5.2.7. Using the induced matrix norm (5.2.4), prove that if A is nonsingular,
then

∥A∥ =
1

min
∥x∥=1

∥∥A−1x
∥∥ or, equivalently,

∥∥A−1
∥∥ =

1
min
∥x∥=1

∥Ax∥ .

5.2.8. For A ∈ Cn×n and a parameter z ∈ C, the matrix R(z) = (zI−A)−1

is called the resolvent of A. Prove that if |z| > ∥A∥ for any induced
matrix norm, then

∥R(z)∥ ≤ 1
|z|− ∥A∥ .
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Similarly,
n∑

i=1

|yi| |xi + yi|p/q ≤ ∥y∥p ∥x + y∥p−1
p , and therefore

∥x + y∥pp ≤
(
∥x∥p + ∥y∥p

)
∥x + y∥p−1

p =⇒ ∥x + y∥p ≤ ∥x∥p + ∥y∥p .

Solutions for exercises in section 5. 2

5.2.1. ∥A∥F =
[∑

i,j |aij |2
]1/2

= [trace (A∗A)]1/2 =
√

10,

∥B∥F =
√

3, and ∥C∥F =
√

9.
5.2.2. (a) ∥A∥1 = max absolute column sum = 4, and ∥A∥∞ = max absolute

row sum = 3. ∥A∥2 =
√

λmax, where λmax is the largest value of λ for which
AT A− λI is singular. Determine these λ ’s by row reduction.

AT A− λI =
(

2−−λ −4
−4 8− λ

)
−→

(
−4 8− λ

2− λ −4

)

−→
(
−4 8− λ
0 −4 + 2−λ

4 (8− λ)

)

This matrix is singular if and only if the second pivot is zero, so we must have
(2−λ)(8−λ)− 16 = 0 =⇒ λ2− 10λ = 0 =⇒ λ = 0, λ = 10, and therefore
∥A∥2 =

√
10.

(b) Use the same technique to get ∥B∥1 = ∥B∥2 = ∥B∥∞ = 1, and
(c) ∥C∥1 = ∥C∥∞ = 10 and ∥C∥2 = 9.

5.2.3. (a) ∥I∥ = max∥x∥=1 ∥Ix∥ = max∥x∥=1 ∥x∥ = 1.

(b) ∥In×n∥F =
[
trace

(
IT I
)]1/2 =

√
n.

5.2.4. Use the fact that trace (AB) = trace (BA) (recall Example 3.6.5) to write

∥A∥2F = trace (A∗A) = trace (AA∗) = ∥A∗∥2F .

5.2.5. (a) For x = 0, the statement is trivial. For x ̸= 0, we have ∥(x/ ∥x∥)∥ = 1,
so for any particular x0 ̸= 0,

∥A∥ = max
∥x∥=1

∥Ax∥ = max
x̸=0

∥∥∥∥A
x
∥x∥

∥∥∥∥ ≥
∥Ax0∥
∥x0∥

=⇒ ∥Ax0∥ ≤ ∥A∥ ∥x0∥ .

(b) Let x0 be a vector such that ∥x0∥ = 1 and

∥ABx0∥ = max
∥x∥=1

∥ABx∥ = ∥AB∥ .

Make use of the result of part (a) to write

∥AB∥ = ∥ABx0∥ ≤ ∥A∥ ∥Bx0∥ ≤ ∥A∥ ∥B∥ ∥x0∥ = ∥A∥ ∥B∥ .



54 Solutions

(c) ∥A∥ = max
∥x∥=1

∥Ax∥ ≤ max
∥x∥≤1

∥Ax∥ because {x | ∥x∥ = 1} ⊂ {x | ∥x∥ ≤ 1} .

If there would exist a vector x0 such that ∥x0∥ < 1 and ∥A∥ < ∥Ax0∥ ,
then part (a) would insure that ∥A∥ < ∥Ax0∥ ≤ ∥A∥ ∥x0∥ < ∥A∥ , which is
impossible.

5.2.6. (a) Applying the CBS inequality yields

|y∗Ax| ≤ ∥y∥2 ∥Ax∥2 =⇒ max
∥x∥2=1
∥y∥2=1

|y∗Ax| ≤ max
∥x∥2=1

∥Ax∥2 = ∥A∥2 .

Now show that equality is actually attained for some pair x and y on the unit
2-sphere. To do so, notice that if x0 is a vector of unit length such that

∥Ax0∥2 = max
∥x∥2=1

∥Ax∥2 = ∥A∥2 , and if y0 =
Ax0

∥Ax0∥2
=

Ax0

∥A∥2
,

then

y∗
0Ax0 =

x∗
0A∗Ax0

∥A∥2
=
∥Ax0∥22
∥A∥2

=
∥A∥22
∥A∥2

= ∥A∥2 .

(b) This follows directly from the result of part (a) because

∥A∥2 = max
∥x∥2=1
∥y∥2=1

|y∗Ax| = max
∥x∥2=1
∥y∥2=1

|(y∗Ax)∗| = max
∥x∥2=1
∥y∥2=1

|x∗A∗y| = ∥A∗∥2 .

(c) Use part (a) with the CBS inequality to write

∥A∗A∥2 = max
∥x∥2=1
∥y∥2=1

|y∗A∗Ax| ≤ max
∥x∥2=1
∥y∥2=1

∥Ay∥2 ∥Ax∥2 = ∥A∥22 .

To see that equality is attained, let x = y = x0, where x0 is a vector of unit
length such that ∥Ax0∥2 = max∥x∥2=1 ∥Ax∥2 = ∥A∥2 , and observe

|x∗
0A

∗Ax0| = x∗
0A

∗Ax0 = ∥Ax0∥22 = ∥A∥22 .

(d) Let D =
(

A 0
0 B

)
. We know from (5.2.7) that ∥D∥22 is the largest value

λ such that DT D − λI is singular. But DT D − λI is singular if and only if
AT A− λI or BT B− λI is singular, so λmax(D) = max {λmax(A), λmax(B)} .

(e) If UU∗ = I, then ∥U∗Ax∥22 = x∗A∗UU∗Ax = x∗A∗Ax = ∥Ax∥22, so
∥U∗A∥2 = max∥x∥2=1 ∥U∗Ax∥2 = max∥x∥2=1 ∥Ax∥2 = ∥A∥2. Now, if V∗V =
I, use what was just established with part (b) to write

∥AV∥2 = ∥(AV)∗∥2 = ∥V∗A∗∥2 = ∥A∗∥2 = ∥A∥2 =⇒ ∥U∗AV∥2 = ∥A∥2.
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5.2.7. Proceed as follows.

1
min
∥x∥=1

∥∥A−1x
∥∥ = max

∥x∥=1

{
1

∥A−1x∥

}
= max

y ̸=0

⎧
⎨

⎩
1∥∥∥A−1 (Ay)
∥Ay∥

∥∥∥

⎫
⎬

⎭

= max
y ̸=0

∥Ay∥
∥A−1(Ay)∥ = max

y ̸=0

∥Ay∥
∥y∥ = max

y ̸=0

∥∥∥∥A
(

y
∥y∥

)∥∥∥∥

= max
∥x∥=1

∥Ax∥ = ∥A∥

5.2.8. Use (5.2.6) on p. 280 to write ∥(zI−A)−1∥ = (1/ min∥x∥=1 ∥(zI−A)x∥), and let
w be a vector for which ∥w∥ = 1 and ∥(zI−A)w∥ = min∥x∥=1 ∥(zI−A)x∥ .
Use ∥Aw∥ ≤ ∥A∥ < |z| together with the “backward triangle inequality” from
Example 5.1.1 (p. 273) to write

∥(zI−A)w∥ = ∥zw −Aw∥ ≥
∣∣∥zw∥ − ∥Aw∥

∣∣ =
∣∣|z|− ∥Aw∥

∣∣

= |z|− ∥Aw∥ ≥ |z|− ∥A∥.

Consequently, min∥x∥=1 ∥(zI−A)x∥ = ∥(zI−A)w∥ ≥ |z|− ∥A∥ implies that

∥(zI−A)−1∥ =
1

min
∥x∥=1

∥(zI−A)x∥ ≤
1

|z|− ∥A∥ .

Solutions for exercises in section 5. 3

5.3.1. Only (c) is an inner product. The expressions in (a) and (b) each fail the first
condition of the definition (5.3.1), and (d) fails the second.

5.3.2. (a) ⟨x y⟩ = 0 ∀ x ∈ V =⇒ ⟨y y⟩ = 0 =⇒ y = 0.

(b) ⟨αx y⟩ = ⟨y αx⟩ = α ⟨y x⟩ = α⟨y x⟩ = α ⟨x y⟩
(c) ⟨x + y z⟩ = ⟨z x + y⟩ = ⟨z x⟩+ ⟨z y⟩ = ⟨z x⟩+ ⟨z y⟩ = ⟨x z⟩+ ⟨y z⟩

5.3.3. The first property in (5.2.3) holds because ⟨x x⟩ ≥ 0 for all x ∈ V implies
∥x∥ =

√
⟨x x⟩ ≥ 0, and ∥x∥ = 0 ⇐⇒ ⟨x x⟩ = 0 ⇐⇒ x = 0. The second

property in (5.2.3) holds because

∥αx∥2 = ⟨αx αx⟩ = α ⟨αx x⟩ = α⟨x αx⟩ = αα⟨x x⟩ = |α|2 ⟨x x⟩ = |α|2 ∥x∥2 .

5.3.4. 0 ≤ ∥x− y∥2 = ⟨x− y x− y⟩ = ⟨x x⟩−2⟨x y⟩+⟨y y⟩ = ∥x∥2−2⟨x y⟩+∥y∥2
5.3.5. (a) Use the CBS inequality with the Frobenius matrix norm and the standard

inner product as illustrated in Example 5.3.3, and set A = I.
(b) Proceed as in part (a), but this time set A = BT (recall from Example
3.6.5 that trace

(
BT B

)
= trace

(
BBT

)
).


