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5.3 INNER-PRODUCT SPACES

The euclidean norm, which naturally came first, is a coordinate-dependent con-
cept. But by isolating its important properties we quickly moved to the more
general coordinate-free definition of a vector norm given in (5.1.9) on p. 275. The
goal is to now do the same for inner products. That is, start with the standard
inner product, which is a coordinate-dependent definition, and identify proper-
ties that characterize the basic essence of the concept. The ones listed below are
those that have been distilled from the standard inner product to formulate a
more general coordinate-free definition.

General Inner Product
An inner product on a real (or complex) vector space V is a function
that maps each ordered pair of vectors x,y to a real (or complex) scalar
⟨x y⟩ such that the following four properties hold.

⟨x x⟩ is real with ⟨x x⟩ ≥ 0, and ⟨x x⟩ = 0 if and only if x = 0,

⟨x αy⟩ = α ⟨x y⟩ for all scalars α, (5.3.1)
⟨x y + z⟩ = ⟨x y⟩ + ⟨x z⟩ ,

⟨x y⟩ = ⟨y x⟩ (for real spaces, this becomes ⟨x y⟩ = ⟨y x⟩).

Notice that for each fixed value of x, the second and third properties
say that ⟨x y⟩ is a linear function of y.

Any real or complex vector space that is equipped with an inner product
is called an inner-product space.

Example 5.3.1
• The standard inner products, ⟨x y⟩ = xT y for ℜn×1 and ⟨x y⟩ = x∗y

for Cn×1 , each satisfy the four defining conditions (5.3.1) for a general inner
product—this shouldn’t be a surprise.

• If An×n is a nonsingular matrix, then ⟨x y⟩ = x∗A∗Ay is an inner product
for Cn×1 . This inner product is sometimes called an A-inner product or
an elliptical inner product.

• Consider the vector space of m × n matrices. The functions defined by

⟨A B⟩ = trace
(
AT B

)
and ⟨A B⟩ = trace (A∗B) (5.3.2)

are inner products for ℜm×n and Cm×n, respectively. These are referred to
as the standard inner products for matrices. Notice that these reduce
to the standard inner products for vectors when n = 1.
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• If V is the vector space of real-valued continuous functions defined on the
interval (a, b), then

⟨f |g⟩ =
∫ b

a
f(t)g(t)dt

is an inner product on V.

Just as the standard inner product for Cn×1 defines the euclidean norm on
Cn×1 by ∥x∥2 =

√
x∗x, every general inner product in an inner-product space

V defines a norm on V by setting

∥⋆∥ =
√

⟨⋆ ⋆⟩. (5.3.3)

It’s straightforward to verify that this satisfies the first two conditions in (5.2.3)
on p. 280 that define a general vector norm, but, just as in the case of euclidean
norms, verifying that (5.3.3) satisfies the triangle inequality requires a generalized
version of CBS inequality.

General CBS Inequality
If V is an inner-product space, and if we set ∥⋆∥ =

√
⟨⋆ ⋆⟩, then

| ⟨x y⟩ | ≤ ∥x∥ ∥y∥ for all x, y ∈ V. (5.3.4)

Equality holds if and only if y = αx for α = ⟨x y⟩ / ∥x∥2 .

Proof. Set α = ⟨x y⟩ / ∥x∥2 (assume x ̸= 0, for otherwise there is nothing to
prove), and observe that ⟨x αx − y⟩ = 0, so

0 ≤ ∥αx − y∥2 = ⟨αx − y αx − y⟩
= ᾱ ⟨x αx − y⟩ − ⟨y αx − y⟩ (see Exercise 5.3.2)

= −⟨y αx − y⟩ = ⟨y y⟩ − α ⟨y x⟩ =
∥y∥2 ∥x∥2 − ⟨x y⟩ ⟨y x⟩

∥x∥2 .

Since ⟨y x⟩ = ⟨x y⟩, it follows that ⟨x y⟩ ⟨y x⟩ = |⟨x y⟩|2 , so

0 ≤ ∥y∥2 ∥x∥2 − |⟨x y⟩|2

∥x∥2 =⇒ | ⟨x y⟩ | ≤ ∥x∥ ∥y∥ .

Establishing the conditions for equality is the same as in Exercise 5.1.9.

Let’s now complete the job of showing that ∥⋆∥ =
√

⟨⋆ ⋆⟩ is indeed a vector
norm as defined in (5.2.3) on p. 280.
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Norms in Inner-Product Spaces
If V is an inner-product space with an inner product ⟨x y⟩ , then

∥⋆∥ =
√
⟨⋆ ⋆⟩ defines a norm on V.

Proof. The fact that ∥⋆∥ =
√

⟨⋆ ⋆⟩ satisfies the first two norm properties in
(5.2.3) on p. 280 follows directly from the defining properties (5.3.1) for an inner
product. You are asked to provide the details in Exercise 5.3.3. To establish the
triangle inequality, use ⟨x y⟩ ≤ | ⟨x y⟩ | and ⟨y x⟩ = ⟨x y⟩ ≤ | ⟨x y⟩ | together
with the CBS inequality to write

∥x + y∥2 = ⟨x + y x + y⟩ = ⟨x x⟩ + ⟨x y⟩ + ⟨y x⟩ + ⟨y y⟩
≤ ∥x∥2 + 2| ⟨x y⟩ | + ∥y∥2 ≤ (∥x∥ + ∥y∥)2.

Example 5.3.2
Problem: Describe the norms that are generated by the inner products pre-
sented in Example 5.3.1.

• Given a nonsingular matrix A ∈ Cn×n, the A-norm (or elliptical norm)
generated by the A-inner product on Cn×1 is

∥x∥A =
√

⟨x x⟩ =
√

x∗A∗Ax = ∥Ax∥2 . (5.3.5)

• The standard inner product for matrices generates the Frobenius matrix
norm because

∥A∥ =
√
⟨A A⟩ =

√
trace (A∗A) = ∥A∥F . (5.3.6)

• For the space of real-valued continuous functions defined on (a, b), the norm
of a function f generated by the inner product ⟨f |g⟩ =

∫ b
a f(t)g(t)dt is

∥f∥ =
√
⟨f |f⟩ =

(∫ b

a
f(t)2dt

)1/2

.
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Example 5.3.3
To illustrate the utility of the ideas presented above, consider the proposition

trace
(
AT B

)2 ≤ trace
(
AT A

)
trace

(
BT B

)
for all A,B ∈ ℜm×n.

Problem: How would you know to formulate such a proposition and, second,
how do you prove it?

Solution: The answer to both questions is the same. This is the CBS inequality
in ℜm×n equipped with the standard inner product ⟨A B⟩ = trace

(
AT B

)
and

associated norm ∥A∥F =
√

⟨A A⟩ =
√

trace (AT A) because CBS says

⟨A B⟩2 ≤ ∥A∥2
F ∥B∥2

F =⇒ trace
(
AT B

)2 ≤ trace
(
AT A

)
trace

(
BT B

)
.

The point here is that if your knowledge is limited to elementary matrix manip-
ulations (which is all that is needed to understand the statement of the propo-
sition), formulating the correct inequality might be quite a challenge to your
intuition. And then proving the proposition using only elementary matrix ma-
nipulations would be a significant task—essentially, you would have to derive a
version of CBS. But knowing the basic facts of inner-product spaces makes the
proposition nearly trivial to conjecture and prove.

Since each inner product generates a norm by the rule ∥⋆∥ =
√

⟨⋆ ⋆⟩, it’s
natural to ask if the reverse is also true. That is, for each vector norm ∥⋆∥
on a space V, does there exist a corresponding inner product on V such that√
⟨⋆ ⋆⟩ = ∥⋆∥2 ? If not, under what conditions will a given norm be generated by

an inner product? These are tricky questions, and it took the combined efforts
of Maurice R. Fréchet38 (1878–1973) and John von Neumann (1903–1957) to
provide the answer.

38
Maurice René Fréchet began his illustrious career by writing an outstanding Ph.D. dissertation
in 1906 under the direction of the famous French mathematician Jacques Hadamard (p. 469)
in which the concepts of a metric space and compactness were first formulated. Fréchet devel-
oped into a versatile mathematical scientist, and he served as professor of mechanics at the
University of Poitiers (1910–1919), professor of higher calculus at the University of Strasbourg
(1920–1927), and professor of differential and integral calculus and professor of the calculus of
probabilities at the University of Paris (1928–1948).

Born in Budapest, Hungary, John von Neumann was a child prodigy who could divide eight-
digit numbers in his head when he was only six years old. Due to the political unrest in
Europe, he came to America, where, in 1933, he became one of the six original professors
of mathematics at the Institute for Advanced Study at Princeton University, a position he
retained for the rest of his life. During his career, von Neumann’s genius touched mathematics
(pure and applied), chemistry, physics, economics, and computer science, and he is generally
considered to be among the best scientists and mathematicians of the twentieth century.
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Parallelogram Identity
For a given norm ∥⋆∥ on a vector space V, there exists an inner product
on V such that ⟨⋆ ⋆⟩ = ∥⋆∥2 if and only if the parallelogram identity

∥x + y∥2 + ∥x − y∥2 = 2
(
∥x∥2 + ∥y∥2 )

(5.3.7)

holds for all x,y ∈ V.

Proof. Consider real spaces—complex spaces are discussed in Exercise 5.3.6. If
there exists an inner product such that ⟨⋆ ⋆⟩ = ∥⋆∥2 , then the parallelogram
identity is immediate because ⟨x + y x + y⟩+⟨x − y x − y⟩ = 2 ⟨x x⟩+2 ⟨y y⟩ .
The difficult part is establishing the converse. Suppose ∥⋆∥ satisfies the paral-
lelogram identity, and prove that the function

⟨x y⟩ =
1
4
(
∥x + y∥2 − ∥x − y∥2 )

(5.3.8)

is an inner product for V such that ⟨x x⟩ = ∥x∥2 for all x by showing the four
defining conditions (5.3.1) hold. The first and fourth conditions are immediate.
To establish the third, use the parallelogram identity to write

∥x + y∥2 + ∥x + z∥2 =
1
2
(
∥x + y + x + z∥2 + ∥y − z∥2 )

,

∥x − y∥2 + ∥x − z∥2 =
1
2
(
∥x − y + x − z∥2 + ∥z − y∥2 )

,

and then subtract to obtain

∥x + y∥2−∥x − y∥2+∥x + z∥2−∥x − z∥2 =
∥2x + (y + z)∥2 − ∥2x − (y + z)∥2

2
.

Consequently,

⟨x y⟩ + ⟨x z⟩ =
1
4
(
∥x + y∥2 − ∥x − y∥2 + ∥x + z∥2 − ∥x − z∥2 )

=
1
8
(
∥2x + (y + z)∥2 − ∥2x − (y + z)∥2 )

=
1
2

(∥∥∥∥x +
y + z

2

∥∥∥∥
2

−
∥∥∥∥x − y + z

2

∥∥∥∥
2
)

= 2
〈
x

y + z
2

〉
,

(5.3.9)

and setting z = 0 produces the statement that ⟨x y⟩ = 2 ⟨x y/ 2⟩ for all y ∈ V.
Replacing y by y + z yields ⟨x y + z⟩ = 2 ⟨x (y + z)/ 2⟩ , and thus (5.3.9)
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guarantees that ⟨x y⟩ + ⟨x z⟩ = ⟨x y + z⟩ . Now prove that ⟨x αy⟩ = α ⟨x y⟩
for all real α. This is valid for integer values of α by the result just established,
and it holds when α is rational because if β and γ are integers, then

γ2

〈

x
β

γ
y
〉

= ⟨γx βy⟩ = βγ ⟨x y⟩ =⇒
〈

x
β

γ
y
〉

=
β

γ
⟨x y⟩ .

Because ∥x + αy∥ and ∥x − αy∥ are continuous functions of α (Exercise
5.1.7), equation (5.3.8) insures that ⟨x αy⟩ is a continuous function of α. There-
fore, if α is irrational, and if {αn} is a sequence of rational numbers such that
αn → α, then ⟨x αny⟩ → ⟨x αy⟩ and ⟨x αny⟩ = αn ⟨x y⟩ → α ⟨x y⟩ , so
⟨x αy⟩ = α ⟨x y⟩ .

Example 5.3.4
We already know that the euclidean vector norm on Cn is generated by the stan-
dard inner product, so the previous theorem guarantees that the parallelogram
identity must hold for the 2-norm. This is easily corroborated by observing that

∥x + y∥2
2 + ∥x − y∥2

2 = (x + y)∗(x + y) + (x − y)∗(x − y)

= 2 (x∗x + y∗y) = 2(∥x∥2
2 + ∥y∥2

2).

The parallelogram identity is so named because it expresses the fact that the
sum of the squares of the diagonals in a parallelogram is twice the sum of the
squares of the sides. See the following diagram.

x

y

x + y

||x||

||y
||

||x + y||

||x - y||

Example 5.3.5
Problem: Except for the euclidean norm, is any other vector p-norm generated
by an inner product?

Solution: No, because the parallelogram identity (5.3.7) doesn’t hold when
p ≠ 2. To see that ∥x + y∥2

p + ∥x − y∥2
p = 2

(

∥x∥2
p + ∥y∥2

p

)

is not valid for
all x,y ∈ Cn when p ≠ 2, consider x = e1 and y = e2. It’s apparent that
∥e1 + e2∥2

p = 22/p = ∥e1 − e2∥2
p , so

∥e1 + e2∥2
p + ∥e1 − e2∥2

p = 2(p+2)/p and 2
(

∥e1∥2
p + ∥e2∥2

p

)

= 4.
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Clearly, 2(p+2)/p = 4 only when p = 2. Details for the ∞-norm are asked for
in Exercise 5.3.7.

Conclusion: For applications that are best analyzed in the context of an inner-
product space (e.g., least squares problems), we are limited to the euclidean
norm or else to one of its variation such as the elliptical norm in (5.3.5).

Virtually all important statements concerning ℜn or Cn with the standard
inner product remain valid for general inner-product spaces—e.g., consider the
statement and proof of the general CBS inequality. Advanced or more theoretical
texts prefer a development in terms of general inner-product spaces. However,
the focus of this text is matrices and the coordinate spaces ℜn and Cn, so
subsequent discussions will usually be phrased in terms of ℜn or Cn and their
standard inner products. But remember that extensions to more general inner-
product spaces are always lurking in the background, and we will not hesitate
to use these generalities or general inner-product notation when they serve our
purpose.

Exercises for section 5.3

5.3.1. For x =
(

x1
x2
x3

)
, y =

(
y1
y2
y3

)
, determine which of the following are inner

products for ℜ3×1 .
(a) ⟨x y⟩ = x1y1 + x3y3 ,
(b) ⟨x y⟩ = x1y1 − x2y2 + x3y3 ,
(c) ⟨x y⟩ = 2x1y1 + x2y2 + 4x3y3 ,
(d) ⟨x y⟩ = x2

1y
2
1 + x2

2y
2
2 + x2

3y
2
3 .

5.3.2. For a general inner-product space V, explain why each of the following
statements must be true.

(a) If ⟨x y⟩ = 0 for all x ∈ V, then y = 0.
(b) ⟨αx y⟩ = α ⟨x y⟩ for all x,y ∈ V and for all scalars α.
(c) ⟨x + y z⟩ = ⟨x z⟩ + ⟨y z⟩ for all x,y, z ∈ V.

5.3.3. Let V be an inner-product space with an inner product ⟨x y⟩ . Explain
why the function defined by ∥⋆∥ =

√
⟨⋆ ⋆⟩ satisfies the first two norm

properties in (5.2.3) on p. 280.

5.3.4. For a real inner-product space with ∥⋆∥2 = ⟨⋆ ⋆⟩ , derive the inequality

⟨x y⟩ ≤ ∥x∥2 + ∥y∥2

2
. Hint: Consider x − y.
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5.3.5. For n × n matrices A and B, explain why each of the following in-
equalities is valid.

(a) |trace (B)|2 ≤ n [trace (B∗B)] .
(b) trace

(
B2

)
≤ trace

(
BT B

)
for real matrices.

(c) trace
(
AT B

)
≤

trace
(
AT A

)
+ trace

(
BT B

)

2
for real matrices.

5.3.6. Extend the proof given on p. 290 concerning the parallelogram identity
(5.3.7) to include complex spaces. Hint: If V is a complex space with
a norm ∥⋆∥ that satisfies the parallelogram identity, let

⟨x y⟩r =
∥x + y∥2 − ∥x − y∥2

4
,

and prove that

⟨x y⟩ = ⟨x y⟩r + i ⟨ix y⟩r (the polarization identity) (5.3.10)

is an inner product on V.

5.3.7. Explain why there does not exist an inner product on Cn (n ≥ 2) such
that ∥⋆∥∞ =

√
⟨⋆ ⋆⟩.

5.3.8. Explain why the Frobenius matrix norm on Cn×n must satisfy the par-
allelogram identity.

5.3.9. For n ≥ 2, is either the matrix 1-, 2-, or ∞-norm generated by an inner
product on Cn×n?
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5.2.7. Proceed as follows.

1
min
∥x∥=1

∥∥A−1x
∥∥ = max

∥x∥=1

{
1

∥A−1x∥

}
= max

y ̸=0

⎧
⎨

⎩
1∥∥∥A−1 (Ay)
∥Ay∥

∥∥∥

⎫
⎬

⎭

= max
y ̸=0

∥Ay∥
∥A−1 (Ay)∥ = max

y ̸=0

∥Ay∥
∥y∥ = max

y ̸=0

∥∥∥∥A
(

y
∥y∥

)∥∥∥∥

= max
∥x∥=1

∥Ax∥ = ∥A∥

5.2.8. Use (5.2.6) on p. 280 to write ∥(zI−A)−1∥ = (1/ min∥x∥=1 ∥(zI−A)x∥), and let
w be a vector for which ∥w∥ = 1 and ∥(zI−A)w∥ = min∥x∥=1 ∥(zI−A)x∥ .
Use ∥Aw∥ ≤ ∥A∥ < |z| together with the “backward triangle inequality” from
Example 5.1.1 (p. 273) to write

∥(zI−A)w∥ = ∥zw −Aw∥ ≥
∣∣∥zw∥ − ∥Aw∥

∣∣ =
∣∣|z|− ∥Aw∥

∣∣

= |z|− ∥Aw∥ ≥ |z|− ∥A∥.

Consequently, min∥x∥=1 ∥(zI−A)x∥ = ∥(zI−A)w∥ ≥ |z|− ∥A∥ implies that

∥(zI−A)−1∥ =
1

min
∥x∥=1

∥(zI−A)x∥ ≤
1

|z|− ∥A∥ .

Solutions for exercises in section 5. 3

5.3.1. Only (c) is an inner product. The expressions in (a) and (b) each fail the first
condition of the definition (5.3.1), and (d) fails the second.

5.3.2. (a) ⟨x y⟩ = 0 ∀ x ∈ V =⇒ ⟨y y⟩ = 0 =⇒ y = 0.

(b) ⟨αx y⟩ = ⟨y αx⟩ = α ⟨y x⟩ = α⟨y x⟩ = α ⟨x y⟩
(c) ⟨x + y z⟩ = ⟨z x + y⟩ = ⟨z x⟩+ ⟨z y⟩ = ⟨z x⟩+ ⟨z y⟩ = ⟨x z⟩+ ⟨y z⟩

5.3.3. The first property in (5.2.3) holds because ⟨x x⟩ ≥ 0 for all x ∈ V implies
∥x∥ =

√
⟨x x⟩ ≥ 0, and ∥x∥ = 0 ⇐⇒ ⟨x x⟩ = 0 ⇐⇒ x = 0. The second

property in (5.2.3) holds because

∥αx∥2 = ⟨αx αx⟩ = α ⟨αx x⟩ = α⟨x αx⟩ = αα⟨x x⟩ = |α|2 ⟨x x⟩ = |α|2 ∥x∥2 .

5.3.4. 0 ≤ ∥x− y∥2 = ⟨x− y x− y⟩ = ⟨x x⟩−2 ⟨x y⟩+⟨y y⟩ = ∥x∥2−2 ⟨x y⟩+∥y∥2
5.3.5. (a) Use the CBS inequality with the Frobenius matrix norm and the standard

inner product as illustrated in Example 5.3.3, and set A = I.
(b) Proceed as in part (a), but this time set A = BT (recall from Example
3.6.5 that trace

(
BT B

)
= trace

(
BBT

)
).
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(c) Use the result of Exercise 5.3.4 with the Frobenius matrix norm and the inner
product for matrices.

5.3.6. Suppose that parallelogram identity holds, and verify that (5.3.10) satisfies the
four conditions in (5.3.1). The first condition follows because ⟨x x⟩r = ∥x∥2 and
⟨ix x⟩r = 0 combine to yield ⟨x x⟩ = ∥x∥2 . The second condition (for real α )
and third condition hold by virtue of the argument for (5.3.7). We will prove the
fourth condition and then return to show that the second holds for complex α.
By observing that ⟨x y⟩r = ⟨y x⟩r and ⟨ix iy⟩r = ⟨x y⟩r , we have

⟨iy x⟩r =
〈
iy −i2x

〉
r

= ⟨y −ix⟩r = −⟨y ix⟩r = −⟨ix y⟩r ,

and hence

⟨y x⟩ = ⟨y x⟩r + i ⟨iy x⟩r = ⟨y x⟩r − i ⟨ix y⟩r = ⟨x y⟩r − i ⟨ix y⟩r = ⟨x y⟩.

Now prove that ⟨x αy⟩ = α ⟨x y⟩ for all complex α. Begin by showing it is
true for α = i.

⟨x iy⟩ = ⟨x iy⟩r + i ⟨ix iy⟩r = ⟨x iy⟩r + i ⟨x y⟩r = ⟨iy x⟩r + i ⟨x y⟩r
= −⟨ix y⟩r + i ⟨x y⟩r = i (⟨x y⟩r + i ⟨ix y⟩r)
= i ⟨x y⟩

For α = ξ + iη,

⟨x αy⟩ = ⟨x ξy + iηy⟩ = ⟨x ξy⟩+ ⟨x iηy⟩ = ξ ⟨x y⟩+ iη ⟨x y⟩ = α ⟨x y⟩ .

Conversely, if ⟨⋆ ⋆⟩ is any inner product on V, then with ∥⋆∥2 = ⟨⋆ ⋆⟩ we have

∥x + y∥2 + ∥x− y∥2 = ⟨x + y x + y⟩+ ⟨x− y x− y⟩
= ∥x∥2 + 2Re ⟨x y⟩+ ∥y∥2 + ∥x∥2 − 2Re ⟨x y⟩+ ∥y∥2

= 2
(
∥x∥2 + ∥y∥2

)
.

5.3.7. The parallelogram identity (5.3.7) fails to hold for all x,y ∈ Cn. For example,
if x = e1 and y = e2 , then

∥e1 + e2∥2∞ + ∥e1 − e2∥2∞ = 2, but 2
(
∥e1∥2∞ + ∥e2∥2∞

)
= 4.

5.3.8. (a) As shown in Example 5.3.2, the Frobenius matrix norm Cn×n is generated
by the standard matrix inner product (5.3.2), so the result on p. 290 guarantees
that ∥⋆∥F satisfies the parallelogram identity.

5.3.9. No, because the parallelogram inequality (5.3.7) doesn’t hold. To see that
∥X + Y∥2 + ∥X−Y∥2 = 2

(
∥X∥2 + ∥Y∥2

)
is not valid for all X,Y ∈ Cn×n,

let X = diag (1, 0, . . . , 0) and Y = diag (0, 1, . . . , 0) . For ⋆ = 1, 2, or ∞,

∥X + Y∥2⋆ + ∥X−Y∥2⋆ = 1 + 1 = 2, but 2
(
∥X∥2⋆ + ∥Y∥2⋆

)
= 4.


