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5.4 ORTHOGONAL VECTORS

Two vectors in ℜ3 are orthogonal (perpendicular) if the angle between them is
a right angle (90◦). But the visual concept of a right angle is not at our disposal in
higher dimensions, so we must dig a little deeper. The essence of perpendicularity
in ℜ2 and ℜ3 is embodied in the classical Pythagorean theorem,

u

|| u ||

v

|| v  ||

|| u - v ||

which says that u and v are orthogonal if and only if ∥u∥2+∥v∥2= ∥u − v∥2.
But 39 ∥u∥2 = uT u for all u ∈ ℜ3, and uT v = vT u, so we can rewrite the
Pythagorean statement as

0 = ∥u∥2+ ∥v∥2− ∥u − v∥2= uT u + vT v − (u − v)T (u − v)

= uT u + vT v −
(
uT u − uT v − vT u + vT v

)
= 2uT v.

Therefore, u and v are orthogonal vectors in ℜ3 if and only if uT v = 0. The
natural extension of this provides us with a definition in more general spaces.

Orthogonality
In an inner-product space V, two vectors x,y ∈ V are said to be
orthogonal (to each other) whenever ⟨x y⟩ = 0, and this is denoted
by writing x ⊥ y.

• For ℜn with the standard inner product, x ⊥ y ⇐⇒ xT y = 0.

• For Cn with the standard inner product, x ⊥ y ⇐⇒ x∗y = 0.

Example 5.4.1

x =

⎛

⎝
1

−2
3

−1

⎞

⎠ is orthogonal to y =

⎛

⎝
4
1

−2
−4

⎞

⎠ because xT y = 0.

39
Throughout this section, only norms generated by an underlying inner product ∥⋆∥2 = ⟨⋆ ⋆⟩
are used, so distinguishing subscripts on the norm notation can be omitted.
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In spite of the fact that uT v = 0, the vectors u =
(

i
3
1

)
and v =

(
i
0
1

)
are

not orthogonal because u∗v ̸= 0.

Now that “right angles” in higher dimensions make sense, how can more
general angles be defined? Proceed just as before, but use the law of cosines
rather than the Pythagorean theorem. Recall that

u

|| u ||

v

|| v
  ||

|| u - v ||

θ

the law of cosines in ℜ2 or ℜ3 says ∥u − v∥2= ∥u∥2+∥v∥2−2 ∥u∥ ∥v∥ cos θ.
If u and v are orthogonal, then this reduces to the Pythagorean theorem. But,
in general,

cos θ =
∥u∥2+ ∥v∥2− ∥u − v∥2

2 ∥u∥ ∥v∥ =
uT u + vT v − (u − v)T (u − v)

2 ∥u∥ ∥v∥

=
2uT v

2 ∥u∥ ∥v∥ =
uT v

∥u∥ ∥v∥ .

This easily extends to higher dimensions because if x, y are vectors from any real
inner-product space, then the general CBS inequality (5.3.4) on p. 287 guarantees
that ⟨x y⟩ / ∥x∥ ∥y∥ is a number in the interval [−1, 1], and hence there is a
unique value θ in [0, π] such that cos θ = ⟨x y⟩ / ∥x∥ ∥y∥.

Angles
In a real inner-product space V, the radian measure of the angle be-
tween nonzero vectors x,y ∈ V is defined to be the number θ ∈ [0, π]
such that

cos θ =
⟨x y⟩

∥x∥ ∥y∥ . (5.4.1)
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Example 5.4.2
In ℜn, cos θ = xT y/ ∥x∥ ∥y∥. For example, to determine the angle between

x =

⎛

⎝
−4

2
1
2

⎞

⎠ and y =

⎛

⎝
1
0
2
2

⎞

⎠, compute cos θ = 2/(5)(3) = 2/15, and use the

inverse cosine function to conclude that θ = 1.437 radians (rounded).

Example 5.4.3
Linear Correlation. Suppose that an experiment is conducted, and the result-
ing observations are recorded in two data vectors

x =

⎛

⎜⎜⎝

x1

x2
...

xn

⎞

⎟⎟⎠ , y =

⎛

⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎠ , and let e =

⎛

⎜⎜⎝

1
1
...
1

⎞

⎟⎟⎠ .

Problem: Determine to what extent the yi ’s are linearly related to the xi ’s.
That is, measure how close y is to being a linear combination β0e + β1x.

Solution: The cosine as defined in (5.4.1) does the job. To understand how, let
µx and σx be the mean and standard deviation of the data in x. That is,

µx =
∑

i xi

n
=

eT x
n

and σx =

√∑
i(xi − µx)2

n
=

∥x − µxe∥2√
n

.

The mean is a measure of central tendency, and the standard deviation mea-
sures the extent to which the data is spread. Frequently, raw data from different
sources is difficult to compare because the units of measure are different—e.g.,
one researcher may use the metric system while another uses American units. To
compensate, data is almost always first “standardized” into unitless quantities.
The standardization of a vector x for which σx ̸= 0 is defined to be

zx =
x − µxe

σx
.

Entries in zx are often referred to as standard scores or z-scores. All stan-
dardized vectors have the properties that ∥z∥ =

√
n, µz = 0, and σz = 1.

Furthermore, it’s not difficult to verify that for vectors x and y such that
σx ̸= 0 and σy ̸= 0, it’s the case that

zx = zy ⇐⇒ ∃ constants β0, β1 such that y = β0e + β1x, where β1> 0,

zx = −zy ⇐⇒ ∃ constants β0, β1 such that y = β0e + β1x, where β1< 0.

• In other words, y = β0e+β1x for some β0 and β1 if and only if zx = ± zy,
in which case we say y is perfectly linearly correlated with x.
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Since zx varies continuously with x, the existence of a “near” linear relationship
between x and y is equivalent to zx being “close” to ± zy in some sense. The
fact that ∥zx∥ = ∥± zy∥ =

√
n means zx and ± zy differ only in orientation,

so a natural measure of how close zx is to ± zy is cos θ, where θ is the angle
between zx and zy. The number

ρxy = cos θ =
zx

T zy

∥zx∥ ∥zy∥
=

zx
T zy

n
=

(x − µxe)T (y − µye)
∥x − µxe∥ ∥y − µye∥

is called the coefficient of linear correlation, and the following facts are now
immediate.

• ρxy = 0 if and only if x and y are orthogonal, in which case we say that
x and y are completely uncorrelated.

• |ρxy| = 1 if and only if y is perfectly correlated with x. That is, |ρxy| = 1
if and only if there exists a linear relationship y = β0e + β1x.

◃ When β1> 0, we say that y is positively correlated with x.

◃ When β1< 0, we say that y is negatively correlated with x.

• |ρxy| measures the degree to which y is linearly related to x. In other
words, |ρxy| ≈ 1 if and only if y ≈ β0e + β1x for some β0 and β1.

◃ Positive correlation is measured by the degree to which ρxy ≈ 1.

◃ Negative correlation is measured by the degree to which ρxy ≈ −1.

If the data in x and y are plotted in ℜ2 as points (xi, yi), then, as depicted in
Figure 5.4.1, ρxy ≈ 1 means that the points lie near a straight line with positive
slope, while ρxy ≈ −1 means that the points lie near a line with negative slope,
and ρxy ≈ 0 means that the points do not lie near a straight line.
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Positive Correlation No CorrelationNegative Correlation

ρxy ≈ 1 ρxy ≈ −1 ρxy ≈ 0

Figure 5.4.1

If |ρxy| ≈ 1, then the theory of least squares as presented in §4.6 can be used
to determine a “best-fitting” straight line.
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Orthonormal Sets
B = {u1,u2, . . . ,un} is called an orthonormal set whenever ∥ui∥ = 1
for each i, and ui ⊥ uj for all i ̸= j. In other words,

⟨ui uj⟩ =
{

1 when i = j,
0 when i ̸= j.

• Every orthonormal set is linearly independent. (5.4.2)
• Every orthonormal set of n vectors from an n-dimensional space V

is an orthonormal basis for V.

Proof. The second point follows from the first. To prove the first statement,
suppose B = {u1,u2, . . . ,un} is orthonormal. If 0 = α1u1+α2u2+ · · ·+αnun,
use the properties of an inner product to write

0 = ⟨ui 0⟩ = ⟨ui α1u1+ α2u2+ · · · + αnun⟩
= α1⟨ui u1⟩ + · · · + αi ⟨ui ui⟩ + · · · + αn ⟨ui un⟩ = αi ∥ui∥2

= αi for each i.

Example 5.4.4

The set B′ =
{
u1=

(
1

−1
0

)
, u2=

(
1
1
1

)
, u3=

(−1
−1

2

)}
is a set of mutually

orthogonal vectors because uT
i uj = 0 for i ̸= j, but B′ is not an orthonormal

set—each vector does not have unit length. However, it’s easy to convert an
orthogonal set (not containing a zero vector) into an orthonormal set by simply
normalizing each vector. Since ∥u1∥ =

√
2, ∥u2∥ =

√
3, and ∥u3∥ =

√
6, it

follows that B =
{
u1/

√
2, u2/

√
3, u3/

√
6
}

is orthonormal.

The most common orthonormal basis is S = {e1, e2, . . . , en} , the stan-
dard basis for ℜn and Cn, and, as illustrated below for ℜ2 and ℜ3, these
orthonormal vectors are directed along the standard coordinate axes.

e1

e2

x

y

e1

e2

e3

x

y

z
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Another orthonormal basis B need not be directed in the same way as S, but
that’s the only significant difference because it’s geometrically evident that B
must amount to some rotation of S. Consequently, we should expect general
orthonormal bases to provide essentially the same advantages as the standard
basis. For example, an important function of the standard basis S for ℜn is to
provide coordinate representations by writing

x = [x]S =

⎛

⎜⎜⎝

x1

x2
...

xn

⎞

⎟⎟⎠ to mean x = x1e1+ x2e2+ · · · + xnen.

With respect to a general basis B = {u1,u2, . . . ,un} , the coordinates of x
are the scalars ξi in the representation x = ξ1u1+ ξ2u2+ · · · + ξnun, and, as
illustrated in Example 4.7.2, finding the ξi ’s requires solving an n × n system,
a nuisance we would like to avoid. But if B is an orthonormal basis, then the
ξi ’s are readily available because ⟨ui x⟩ = ⟨ui ξ1u1+ ξ2u2+ · · · + ξnun⟩ =∑n

j=1ξj ⟨ui uj⟩ = ξi ∥ui∥2= ξi. This yields the Fourier
40

expansion of x.

Fourier Expansions
If B = {u1,u2, . . . ,un} is an orthonormal basis for an inner-product
space V, then each x ∈ V can be expressed as

x = ⟨u1 x⟩u1+ ⟨u2 x⟩u2+ · · · + ⟨un x⟩un. (5.4.3)

This is called the Fourier expansion of x. The scalars ξi = ⟨ui x⟩
are the coordinates of x with respect to B, and they are called the
Fourier coefficients. Geometrically, the Fourier expansion resolves x
into n mutually orthogonal vectors ⟨ui x⟩ui, each of which represents
the orthogonal projection of x onto the space (line) spanned by ui.
(More is said in Example 5.13.1 on p. 431 and Exercise 5.13.11.)

40
Jean Baptiste Joseph Fourier (1768–1830) was a French mathematician and physicist who,
while studying heat flow, developed expansions similar to (5.4.3). Fourier’s work dealt with
special infinite-dimensional inner-product spaces involving trigonometric functions as discussed
in Example 5.4.6. Although they were apparently used earlier by Daniel Bernoulli (1700–1782)
to solve problems concerned with vibrating strings, these orthogonal expansions became known
as Fourier series, and they are now a fundamental tool in applied mathematics. Born the son
of a tailor, Fourier was orphaned at the age of eight. Although he showed a great aptitude for
mathematics at an early age, he was denied his dream of entering the French artillery because
of his “low birth.” Instead, he trained for the priesthood, but he never took his vows. However,
his talents did not go unrecognized, and he later became a favorite of Napoleon. Fourier’s work
is now considered as marking an epoch in the history of both pure and applied mathematics.
The next time you are in Paris, check out Fourier’s plaque on the first level of the Eiffel Tower.
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Example 5.4.5

Problem: Determine the Fourier expansion of x =
(−1

2
1

)
with respect to the

standard inner product and the orthonormal basis given in Example 5.4.4

B =

⎧
⎨

⎩ u1=
1√
2

⎛

⎝
1

−1
0

⎞

⎠ , u2=
1√
3

⎛

⎝
1
1
1

⎞

⎠ , u3=
1√
6

⎛

⎝
−1
−1

2

⎞

⎠

⎫
⎬

⎭ .

Solution: The Fourier coefficients are

ξ1= ⟨u1 x⟩ =
−3√

2
, ξ2= ⟨u2 x⟩ =

2√
3
, ξ3= ⟨u3 x⟩ =

1√
6
,

so

x = ξ1u1+ ξ2u2+ ξ3u3=
1
2

⎛

⎝
−3

3
0

⎞

⎠ +
1
3

⎛

⎝
2
2
2

⎞

⎠ +
1
6

⎛

⎝
−1
−1

2

⎞

⎠ .

You may find it instructive to sketch a picture of these vectors in ℜ3.

Example 5.4.6
Fourier Series. Let V be the inner-product space of real-valued functions
that are integrable on the interval (−π, π) and where the inner product and
norm are given by

⟨f |g⟩ =
∫ π

− π
f(t)g(t)dt and ∥f∥ =

(∫ π

− π
f2(t)dt

)1/2

.

It’s straightforward to verify that the set of trigonometric functions

B′ = {1, cos t, cos 2t, . . . , sin t, sin 2t, sin 3t, . . .}

is a set of mutually orthogonal vectors, so normalizing each vector produces the
orthonormal set

B =
{

1√
2π

,
cos t√

π
,

cos 2t√
π

, . . . ,
sin t√

π
,

sin 2t√
π

,
sin 3t√

π
, . . .

}
.

Given an arbitrary f ∈ V, we construct its Fourier expansion

F (t) = α0
1√
2π

+
∞∑

k=1

αk
cos kt√

π
+

∞∑

k=1

βk
sin kt√

π
, (5.4.4)
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where the Fourier coefficients are given by

α0=
〈

1√
2π

f

〉
=

1√
2π

∫ π

− π
f(t)dt ,

αk =
〈

cos kt√
π

f

〉
=

1√
π

∫ π

− π
f(t) cos kt dt for k = 1, 2, 3, . . . ,

βk =
〈

sin kt√
π

f

〉
=

1√
π

∫ π

− π
f(t) sin kt dt for k = 1, 2, 3, . . . .

Substituting these coefficients in (5.4.4) produces the infinite series

F (t) =
a0

2
+

∞∑

n=1

(an cos nt + bn sin nt) , (5.4.5)

where

an =
1
π

∫ π

− π
f(t) cos nt dt and bn =

1
π

∫ π

− π
f(t) sin nt dt. (5.4.6)

The series F (t) in (5.4.5) is called the Fourier series expansion for f(t), but,
unlike the situation in finite-dimensional spaces, F (t) need not agree with the
original function f(t). After all, F is periodic, so there is no hope of agreement
when f is not periodic. However, the following statement is true.
• If f(t) is a periodic function with period 2π that is sectionally continu-

ous 41 on the interval (−π, π), then the Fourier series F (t) converges to
f(t) at each t ∈ (−π, π), where f is continuous. If f is discontinuous
at t0 but possesses left-hand and right-hand derivatives at t0, then F (t0)
converges to the average value

F (t0) =
f(t−0) + f(t+0)

2
,

where f(t−0) and f(t+0) denote the one-sided limits f(t−0) = limt→t−0
f(t)

and f(t+0) = limt→t+0
f(t).

For example, the square wave function defined by

f(t) =
{
−1 when −π < t < 0,

1 when 0 < t < π,

41
A function f is sectionally continuous on (a, b) when f has only a finite number of discon-
tinuities in (a, b) and the one-sided limits exist at each point of discontinuity as well as at the
end points a and b.
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and illustrated in Figure 5.4.2, satisfies these conditions. The value of f at t = 0
is irrelevant—it’s not even necessary that f(0) be defined.

π

1

−π

−1

Figure 5.4.2

To find the Fourier series expansion for f, compute the coefficients in (5.4.6) as

an =
1
π

∫ π

− π
f(t) cos nt dt =

1
π

∫ 0

− π
− cos nt dt +

1
π

∫ π

0
cos nt dt

= 0,

bn =
1
π

∫ π

− π
f(t) sin nt dt =

1
π

∫ 0

− π
− sin nt dt +

1
π

∫ π

0
sin nt dt

=
2

nπ
(1 − cos nπ) =

{
0 when n is even,

4/nπ when n is odd,

so that

F (t) =
4
π

sin t +
4
3π

sin 3t +
4
5π

sin 5t + · · · =
∞∑

n=1

4
(2n − 1)π

sin(2n − 1)t.

For each t ∈ (−π, π), except t = 0, it must be the case that F (t) = f(t), and

F (0) =
f(0− ) + f(0+)

2
= 0.

Not only does F (t) agree with f(t) everywhere f is defined, but F also pro-
vides a periodic extension of f in the sense that the graph of F (t) is the entire
square wave depicted in Figure 5.4.2—the values at the points of discontinuity
(the jumps) are F (± nπ) = 0.
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Exercises for section 5.4

5.4.1. Using the standard inner product, determine which of the following pairs
are orthogonal vectors in the indicated space.

(a) x =

⎛

⎝
1

−3
4

⎞

⎠ and y =

⎛

⎝
−2

2
2

⎞

⎠ in ℜ3,

(b) x =

⎛

⎜⎝

i
1 + i

2
1 − i

⎞

⎟⎠ and y =

⎛

⎜⎝

0
1 + i
−2

1 − i

⎞

⎟⎠ in C4,

(c) x =

⎛

⎜⎝

1
−2

3
4

⎞

⎟⎠ and y =

⎛

⎜⎝

4
2

−1
1

⎞

⎟⎠ in ℜ4,

(d) x =

⎛

⎝
1 + i

1
i

⎞

⎠ and y =

⎛

⎝
1 − i
−3
−i

⎞

⎠ in C3,

(e) x =

⎛

⎜⎜⎝

0
0
...
0

⎞

⎟⎟⎠ and y =

⎛

⎜⎜⎝

y1

y2
...

yn

⎞

⎟⎟⎠ in ℜn.

5.4.2. Find two vectors of unit norm that are orthogonal to u =
(

3
−2

)
.

5.4.3. Consider the following set of three vectors.
⎧
⎪⎨

⎪⎩
x1=

⎛

⎜⎝

1
−1

0
2

⎞

⎟⎠ , x2=

⎛

⎜⎝

1
1
1
0

⎞

⎟⎠ , x3=

⎛

⎜⎝

−1
−1

2
0

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

(a) Using the standard inner product in ℜ4, verify that these vec-
tors are mutually orthogonal.

(b) Find a nonzero vector x4 such that {x1, x2, x3, x4} is a set
of mutually orthogonal vectors.

(c) Convert the resulting set into an orthonormal basis for ℜ4.

5.4.4. Using the standard inner product, determine the Fourier expansion of
x with respect to B, where

x =

⎛

⎝
1
0

−2

⎞

⎠ and B =

⎧
⎨

⎩
1√
2

⎛

⎝
1

−1
0

⎞

⎠ ,
1√
3

⎛

⎝
1
1
1

⎞

⎠ ,
1√
6

⎛

⎝
−1
−1

2

⎞

⎠

⎫
⎬

⎭ .
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5.4.5. With respect to the inner product for matrices given by (5.3.2), verify
that the set

B =
{

1√
2

(
0 1
1 0

)
,

1√
2

(
1 0
0 −1

)
,

1
2

(
1 −1
1 1

)
,

1
2

(
1 1

−1 1

)}

is an orthonormal basis for ℜ2×2, and then compute the Fourier expan-
sion of A =

(
1 1
1 1

)
with respect to B.

5.4.6. Determine the angle between x =
(

2
−1

1

)
and y =

(
1
1
2

)
.

5.4.7. Given an orthonormal basis B for a space V, explain why the Fourier
expansion for x ∈ V is uniquely determined by B.

5.4.8. Explain why the columns of Un×n are an orthonormal basis for Cn if
and only if U∗ = U− 1. Such matrices are said to be unitary—their
properties are studied in a later section.

5.4.9. Matrices with the property A∗A = AA∗ are said to be normal. No-
tice that hermitian matrices as well as real symmetric matrices are in-
cluded in the class of normal matrices. Prove that if A is normal, then
R (A) ⊥ N (A)—i.e., every vector in R (A) is orthogonal to every vec-
tor in N (A). Hint: Recall equations (4.5.5) and (4.5.6).

5.4.10. Using the trace inner product described in Example 5.3.1, determine the
angle between the following pairs of matrices.

(a) I =
(

1 0
0 1

)
and B =

(
1 1
1 1

)
.

(b) A =
(

1 3
2 4

)
and B =

(
2 −2
2 0

)
.

5.4.11. Why is the definition for cos θ given in (5.4.1) not good for Cn? Explain
how to define cos θ so that it makes sense in Cn.

5.4.12. If {u1,u2, . . . ,un} is an orthonormal basis for an inner-product space
V, explain why

⟨x y⟩ =
∑

i

⟨x ui⟩ ⟨ui y⟩

holds for every x,y ∈ V.
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5.4.13. Consider a real inner-product space, where ∥⋆∥2= ⟨⋆ ⋆⟩ .
(a) Prove that if ∥x∥ = ∥y∥ , then (x + y) ⊥ (x − y).
(b) For the standard inner product in ℜ2, draw a picture of this.

That is, sketch the location of x+y and x−y for two vectors
with equal norms.

5.4.14. Pythagorean Theorem. Let V be a general inner-product space in
which ∥⋆∥2= ⟨⋆ ⋆⟩ .

(a) When V is a real space, prove that x ⊥ y if and only if
∥x + y∥2 = ∥x∥2+ ∥y∥2. (Something would be wrong if this
were not true because this is where the definition of orthogonal-
ity originated.)

(b) Construct an example to show that one of the implications in
part (a) does not hold when V is a complex space.

(c) When V is a complex space, prove that x ⊥ y if and only if
∥αx + βy∥2= ∥αx∥2+ ∥βy∥2 for all scalars α and β.

5.4.15. Let B = {u1,u2, . . . ,un} be an orthonormal basis for an inner-product
space V, and let x =

∑
i ξiui be the Fourier expansion of x ∈ V.

(a) If V is a real space, and if θi is the angle between ui and x,
explain why

ξi = ∥x∥ cos θi.

Sketch a picture of this in ℜ2 or ℜ3 to show why the com-
ponent ξiui represents the orthogonal projection of x onto
the line determined by ui, and thus illustrate the fact that a
Fourier expansion is nothing more than simply resolving x into
mutually orthogonal components.

(b) Derive Parseval’s identity, 42 which says
∑n

i=1|ξi|2= ∥x∥2.

5.4.16. Let B = {u1,u2, . . . ,uk} be an orthonormal set in an n-dimensional
inner-product space V. Derive Bessel’s inequality, 43 which says that
if x ∈ V and ξi = ⟨ui x⟩ , then

k∑

i=1

|ξi|2≤ ∥x∥2.

Explain why equality holds if and only if x ∈ span {u1,u2, . . . ,uk} .

Hint: Consider ∥x −
∑k

i=1ξiui∥2.

42
This result appeared in the second of the five mathematical publications by Marc-Antoine
Parseval des Chênes (1755–1836). Parseval was a royalist who had to flee from France when
Napoleon ordered his arrest for publishing poetry against the regime.

43
This inequality is named in honor of the German astronomer and mathematician Friedrich
Wilhelm Bessel (1784–1846), who devoted his life to understanding the motions of the stars.
In the process he introduced several useful mathematical ideas.
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5.4.17. Construct an example using the standard inner product in ℜn to show
that two vectors x and y can have an angle between them that is close
to π/2 without xT y being close to 0. Hint: Consider n to be large,
and use the vector e of all 1’s for one of the vectors.

5.4.18. It was demonstrated in Example 5.4.3 that y is linearly correlated with
x in the sense that y ≈ β0e + β1x if and only if the standardization
vectors zx and zy are “close” in the sense that they are almost on the
same line in ℜn. Explain why simply measuring ∥zx − zy∥2 does not
always gauge the degree of linear correlation.

5.4.19. Let θ be the angle between two vectors x and y from a real inner-
product space.

(a) Prove that cos θ = 1 if and only if y = αx for α > 0.
(b) Prove that cos θ = −1 if and only if y = αx for α < 0.

Hint: Use the generalization of Exercise 5.1.9.

5.4.20. With respect to the orthonormal set

B =
{

1√
2π

,
cos t√

π
,

cos 2t√
π

, . . . ,
sin t√

π
,

sin 2t√
π

,
sin 3t√

π
, . . .

}
,

determine the Fourier series expansion of the saw-toothed function
defined by f(t) = t for −π < t < π. The periodic extension of this
function is depicted in Figure 5.4.3.

π

π

−π

−π

Figure 5.4.3
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Solutions for exercises in section 5. 4

5.4.1. (a), (b), and (e) are orthogonal pairs.

5.4.2. First find v =
(

α1

α2

)
such that 3α1 − 2α2 = 0, and then normalize v. The

second must be the negative of v.
5.4.3. (a) Simply verify that xT

i xj = 0 for i ̸= j.

(b) Let xT
4 = (α1 α2 α3 α4 ) , and notice that xT

i x4 = 0 for i = 1, 2,3
is three homogeneous equations in four unknowns

⎛

⎝
1 −1 0 2
1 1 1 0
−1 −1 2 0

⎞

⎠

⎛

⎜⎝

α1

α2

α3

α4

⎞

⎟⎠ =

⎛

⎝
0
0
0

⎞

⎠ =⇒

⎛

⎜⎝

α1

α2

α3

α4

⎞

⎟⎠ = β

⎛

⎜⎝

−1
1
0
1

⎞

⎟⎠ .

(c) Simply normalize the set by dividing each vector by its norm.
5.4.4. The Fourier coefficients are

ξ1 = ⟨u1 x⟩ =
1√
2
, ξ2 = ⟨u2 x⟩ =

−1√
3
, ξ3 = ⟨u3 x⟩ =

−5√
6
,

so

x = ξ1u1 + ξ2u2 + ξ3u3 =
1
2

⎛

⎝
1
−1

0

⎞

⎠− 1
3

⎛

⎝
1
1
1

⎞

⎠− 5
6

⎛

⎝
−1
−1

2

⎞

⎠ .

5.4.5. If U1, U2, U3, and U4 denote the elements of B, verify they constitute an
orthonormal set by showing that

⟨Ui Uj⟩ = trace(UT
i Uj) = 0 for i ̸= j and ∥Ui∥ =

√
trace(UT

i Ui) = 1.

Consequently, B is linearly independent—recall (5.4.2)—and therefore B is a
basis because it is a maximal independent set—part (b) of Exercise 4.4.4 insures
dimℜ2×2 = 4. The Fourier coefficients ⟨Ui A⟩ = trace(UT

i A) are

⟨U1 A⟩ =
2√
2
, ⟨U2 A⟩ = 0, ⟨U3 A⟩ = 1, ⟨U4 A⟩ = 1,

so the Fourier expansion of A is A = (2/
√

2)U1 + U3 + U4.
5.4.6. cos θ = xT y/ ∥x∥ ∥y∥ = 1/2, so θ = π/3.
5.4.7. This follows because each vector has a unique representation in terms of a basis—

see Exercise 4.4.8 or the discussion of coordinates in §4.7.
5.4.8. If the columns of U = [u1 |u2 | · · · |un] are an orthonormal basis for Cn, then

[U∗U]ij = u∗
i uj =

{
1 when i = j,
0 when i ̸= j,

(‡)
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and, therefore, U∗U = I. Conversely, if U∗U = I, then ( ‡ ) holds, so the
columns of U are orthonormal—they are a basis for Cn because orthonormal
sets are always linearly independent.

5.4.9. Equations (4.5.5) and (4.5.6) guarantee that

R (A) = R (AA∗) and N (A) = N (A∗A),

and consequently r ∈ R (A) = R (AA∗) =⇒ r = AA∗x for some x, and
n ∈ N (A) = N (A∗A) =⇒ A∗An = 0. Therefore,

⟨r n⟩ = r∗n = x∗AA∗n = x∗A∗An = 0.

5.4.10. (a) π/4 (b) π/2
5.4.11. The number xT y or x∗y will in general be complex. In order to guarantee that

we end up with a real number, we should take

cos θ =
|Re (x∗y) |
∥x∥ ∥y∥ .

5.4.12. Use the Fourier expansion y =
∑

i ⟨ui y⟩ui together with the various properties
of an inner product to write

⟨x y⟩ =

〈

x
∑

i

⟨ui y⟩ui

〉

=
∑

i

⟨x ⟨ui y⟩ui⟩ =
∑

i

⟨ui y⟩ ⟨x ui⟩ .

5.4.13. In a real space, ⟨x y⟩ = ⟨y x⟩ , so the third condition in the definition (5.3.1)
of an inner product and Exercise 5.3.2(c) produce

⟨x + y x− y⟩ = ⟨x + y x⟩ − ⟨x + y y⟩
= ⟨x x⟩+ ⟨y x⟩ − ⟨x y⟩ − ⟨y y⟩
= ∥x∥2 − ∥y∥2 = 0.

5.4.14. (a) In a real space, ⟨x y⟩ = ⟨y x⟩ , so the third condition in the definition
(5.3.1) of an inner product and Exercise 5.3.2(c) produce

∥x + y∥2 = ⟨x + y x + y⟩ = ⟨x + y x⟩+ ⟨x + y y⟩
= ⟨x x⟩+ ⟨y x⟩+ ⟨x y⟩+ ⟨y y⟩
= ∥x∥2 + 2 ⟨x y⟩+ ∥y∥2 ,

and hence ⟨x y⟩ = 0 if and only if ∥x + y∥2 = ∥x∥2 + ∥y∥2 .

(b) In a complex space, x ⊥ y =⇒ ∥x + y∥2 = ∥x∥2 + ∥y∥2 , but the
converse is not valid—e.g., consider C2 with the standard inner product, and

let x =
(
−i
1

)
and y =

(
1
i

)
.



Solutions 59

(c) Again, using the properties of a general inner product, derive the expansion

∥αx + βy∥2 = ⟨αx + βy αx + βy⟩
= ⟨αx αx⟩+ ⟨αx βy⟩+ ⟨βy αx⟩+ ⟨βy βy⟩
= ∥αx∥2 + αβ ⟨x y⟩+ βα ⟨y x⟩+ ∥βy∥2 .

Clearly, x ⊥ y =⇒ ∥αx + βy∥2 = ∥αx∥2 + ∥βy∥2 ∀ α, β. Conversely, if
∥αx + βy∥2 = ∥αx∥2 + ∥βy∥2 ∀ α, β, then αβ ⟨x y⟩ + βα ⟨y x⟩ = 0 ∀ α, β.
Letting α = ⟨x y⟩ and β = 1 produces the conclusion that 2| ⟨x y⟩ |2 = 0,
and thus ⟨x y⟩ = 0.

5.4.15. (a) cos θi = ⟨ui x⟩ / ∥ui∥ ∥x∥ = ⟨ui x⟩ / ∥x∥ = ξi/ ∥x∥
(b) Use the Pythagorean theorem (Exercise 5.4.14) to write

∥x∥2 = ∥ξ1u1 + ξ2u2 + · · · + ξnun∥2

= ∥ξ1u1∥2 + ∥ξ2u2∥2 + · · · + ∥ξnun∥2

= |ξ1|2 + |ξ2|2 + · · · + |ξn|2.

5.4.16. Use the properties of an inner product to write
∥∥∥∥∥x−

k∑

i=1

ξiui

∥∥∥∥∥

2

=

〈

x−
k∑

i=1

ξiui x−
k∑

i=1

ξiui

〉

= ⟨x x⟩ − 2
∑

i

|ξi|2 +

〈
k∑

i=1

ξiui

k∑

i=1

ξiui

〉

= ∥x∥2 − 2
∑

i

|ξi|2 +

∥∥∥∥∥

k∑

i=1

ξiui

∥∥∥∥∥

2

,

and then invoke the Pythagorean theorem (Exercise 5.4.14) to conclude

∥∥∥∥∥

k∑

i=1

ξiui

∥∥∥∥∥

2

=
∑

i

∥ξiui∥2 =
∑

i

|ξi|2.

Consequently,

0 ≤

∥∥∥∥∥x−
k∑

i=1

ξiui

∥∥∥∥∥

2

= ∥x∥2 −
∑

i

|ξi|2 =⇒
k∑

i=1

|ξi|2 ≤ ∥x∥2 . (‡)

If x ∈ span {u1,u2, . . . ,uk} , then the Fourier expansion of x with respect
to the ui ’s is x =

∑k
i=1 ξiui, and hence equality holds in (‡). Conversely, if

equality holds in (‡), then x−
∑k

i=1 ξiui = 0.
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5.4.17. Choose any unit vector ei for y. The angle between e and ei approaches π/2
as n→∞, but eT ei = 1 for all n.

5.4.18. If y is negatively correlated to x, then zx = −zy, but ∥zx − zy∥2 = 2
√

n
gives no indication of the fact that zx and zy are on the same line. Continuity
therefore dictates that when y ≈ β0e + β1x with β1 < 0, then zx ≈ −zy, but
∥zx − zy∥2 ≈ 2

√
n gives no hint that zx and zy are almost on the same line.

If we want to use norms to gauge linear correlation, we should use

min
{
∥zx − zy∥2 , ∥zx + zy∥2

}
.

5.4.19. (a) cos θ = 1 =⇒ ⟨x y⟩ = ∥x∥ ∥y∥ > 0, and the straightforward extension of
Exercise 5.1.9 guarantees that

y =
⟨x y⟩
∥x∥2

x, and clearly
⟨x y⟩
∥x∥2

> 0.

Conversely, if y = αx for α > 0, then ⟨x y⟩ = α ∥x∥2 =⇒ cos θ = 1.

(b) cos θ = −1 =⇒ ⟨x y⟩ = −∥x∥ ∥y∥ < 0, so the generalized version of
Exercise 5.1.9 guarantees that

y =
⟨x y⟩
∥x∥2

x, and in this case
⟨x y⟩
∥x∥2

< 0.

Conversely, if y = αx for α < 0, then ⟨x y⟩ = α ∥x∥2 , so

cos θ =
α ∥x∥2

|α| ∥x∥2
= −1.

5.4.20. F (t) =
∑∞

n (−1)n 2
n sinnt.

Solutions for exercises in section 5. 5

5.5.1. (a)

u1 =
1
2

⎛

⎜⎝

1
1
1
−1

⎞

⎟⎠ , u2 =
1

2
√

3

⎛

⎜⎝

3
−1
−1

1

⎞

⎟⎠ , u3 =
1√
6

⎛

⎜⎝

0
1
1
2

⎞

⎟⎠

(b) First verify this is an orthonormal set by showing uT
i uj =

{
1 when i = j,
0 when i ̸= j.

To show that the xi ’s and the ui ’s span the same space, place the xi ’s as rows
in a matrix A, and place the ui ’s as rows in a matrix B, and then verify that
EA = EB—recall Example 4.2.2.
(c) The result should be the same as in part (a).


