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5.5 GRAM–SCHMIDT PROCEDURE

As discussed in §5.4, orthonormal bases possess significant advantages over bases
that are not orthonormal. The spaces ℜn and Cn clearly possess orthonormal
bases (e.g., the standard basis), but what about other spaces? Does every finite-
dimensional space possess an orthonormal basis, and, if so, how can one be
produced? The Gram–Schmidt

44 orthogonalization procedure developed below
answers these questions.

Let B = {x1,x2, . . . ,xn} be an arbitrary basis (not necessarily orthonormal)
for an n-dimensional inner-product space S, and remember that ∥⋆∥ = ⟨⋆ ⋆⟩1/2.

Objective: Use B to construct an orthonormal basis O = {u1,u2, . . . ,un}
for S.

Strategy: Construct O sequentially so that Ok = {u1,u2, . . . ,uk} is an or-
thonormal basis for Sk = span {x1, x2, . . . ,xk} for k = 1, . . . , n.

For k = 1, simply take u1 = x1/ ∥x1∥. It’s clear that O1 = {u1} is an
orthonormal set whose span agrees with that of S1 = {x1} . Now reason in-
ductively. Suppose that Ok = {u1,u2, . . . ,uk} is an orthonormal basis for
Sk = span {x1, x2, . . . ,xk} , and consider the problem of finding one additional
vector uk+1 such that Ok+1 = {u1, u2, . . . ,uk, uk+1} is an orthonormal basis
for Sk+1 = span {x1, x2, . . . ,xk, xk+1} . For this to hold, the Fourier expansion
(p. 299) of xk+1 with respect to Ok+1 must be

xk+1 =
k+1∑

i=1

⟨ui xk+1⟩ui,

which in turn implies that

uk+1 =
xk+1 −

∑k
i=1 ⟨ui xk+1⟩ui

⟨uk+1 xk+1⟩
. (5.5.1)

Since ∥uk+1∥ = 1, it follows from (5.5.1) that

| ⟨uk+1 xk+1⟩ | =
∥∥∥xk+1 −

k∑

i=1

⟨ui xk+1⟩ui

∥∥∥,

44
Jorgen P. Gram (1850–1916) was a Danish actuary who implicitly presented the essence of or-
thogonalization procedure in 1883. Gram was apparently unaware that Pierre-Simon Laplace
(1749–1827) had earlier used the method. Today, Gram is remembered primarily for his de-
velopment of this process, but in earlier times his name was also associated with the matrix
product A∗A that historically was referred to as the Gram matrix of A.

Erhard Schmidt (1876–1959) was a student of Hermann Schwarz (of CBS inequality fame) and
the great German mathematician David Hilbert. Schmidt explicitly employed the orthogonal-
ization process in 1907 in his study of integral equations, which in turn led to the development
of what are now called Hilbert spaces. Schmidt made significant use of the orthogonalization
process to develop the geometry of Hilbert Spaces, and thus it came to bear Schmidt’s name.
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so ⟨uk+1 xk+1⟩ = eiθ
∥∥xk+1 −

∑k
i=1 ⟨ui xk+1⟩ui

∥∥ for some 0 ≤ θ < 2π, and

uk+1 =
xk+1 −

∑k
i=1 ⟨ui xk+1⟩ui

eiθ
∥∥∥xk+1 −

∑k
i=1 ⟨ui xk+1⟩ui

∥∥∥
.

Since the value of θ in the scalar eiθ neither affects span {u1,u2, . . . ,uk+1} nor
the facts that ∥uk+1∥ = 1 and ⟨uk+1 ui⟩ = 0 for all i ≤ k, we can arbitrarily
define uk+1 to be the vector corresponding to the θ = 0 or, equivalently,
eiθ = 1. For the sake of convenience, let

νk+1 =
∥∥∥xk+1 −

k∑

i=1

⟨ui xk+1⟩ui

∥∥∥

so that we can write

u1 =
x1

∥x1∥
and uk+1 =

xk+1 −
∑k

i=1 ⟨ui xk+1⟩ui

νk+1
for k > 0. (5.5.2)

This sequence of vectors is called the Gram–Schmidt sequence. A straight-
forward induction argument proves that Ok = {u1,u2, . . . ,uk} is indeed an or-
thonormal basis for span {x1,x2, . . . ,xk} for each k = 1, 2, . . . . Details are
called for in Exercise 5.5.7.

The orthogonalization procedure defined by (5.5.2) is valid for any inner-
product space, but if we concentrate on subspaces of ℜm or Cm with the stan-
dard inner product and euclidean norm, then we can formulate (5.5.2) in terms
of matrices. Suppose that B = {x1,x2, . . . ,xn} is a basis for an n-dimensional
subspace S of Cm×1 so that the Gram–Schmidt sequence (5.5.2) becomes

u1 =
x1

∥x1∥
and uk =

xk −
∑k−1

i=1 (u∗
i xk)ui∥∥∥xk −

∑k−1
i=1 (u∗

i xk)ui

∥∥∥
for k = 2, 3, . . . , n. (5.5.3)

To express this in matrix notation, set
U1 = 0m×1 and Uk =

(
u1 |u2 | · · · |uk−1

)
m×k−1

for k > 1,

and notice that

U∗
kxk =

⎛

⎜⎜⎝

u∗
1xk

u∗
2xk
...

u∗
k−1xk

⎞

⎟⎟⎠ and UkU∗
kxk =

k−1∑

i=1

ui (u∗
i xk) =

k−1∑

i=1

(u∗
i xk)ui.

Since

xk −
k−1∑

i=1

(u∗
i xk)ui = xk − UkU∗

kxk = (I − UkU∗
k)xk,

the vectors in (5.5.3) can be concisely written as

uk =
(I − UkU∗

k)xk

∥(I − UkU∗
k)xk∥

for k = 1, 2, . . . , n.

Below is a summary.
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Gram–Schmidt Orthogonalization Procedure
If B = {x1,x2, . . . ,xn} is a basis for a general inner-product space S,
then the Gram–Schmidt sequence defined by

u1 =
x1

∥x1∥
and uk =

xk −
∑k−1

i=1 ⟨ui xk⟩ui∥∥∥xk −
∑k−1

i=1 ⟨ui xk⟩ui

∥∥∥
for k = 2, . . . , n

is an orthonormal basis for S. When S is an n-dimensional subspace
of Cm×1, the Gram–Schmidt sequence can be expressed as

uk =
(I − UkU∗

k)xk

∥(I − UkU∗
k)xk∥

for k = 1, 2, . . . , n (5.5.4)

in which U1 = 0m×1 and Uk =
(
u1 |u2 | · · · |uk−1

)
m×k−1

for k > 1.

Example 5.5.1
Classical Gram–Schmidt Algorithm. The following formal algorithm is the
straightforward or “classical” implementation of the Gram–Schmidt procedure.
Interpret a ← b to mean that “a is defined to be (or overwritten by) b.”

For k = 1:
u1 ← x1

∥x1∥
For k > 1:

uk ← xk −
k−1∑
i=1

(u∗
i xk)ui

uk ← uk

∥uk∥

(See Exercise 5.5.10 for other formulations of the Gram–Schmidt algorithm.)

Problem: Use the classical formulation of the Gram–Schmidt procedure given
above to find an orthonormal basis for the space spanned by the following three
linearly independent vectors.

x1 =

⎛

⎜⎝

1
0
0

−1

⎞

⎟⎠ , x2 =

⎛

⎜⎝

1
2
0

−1

⎞

⎟⎠ , x3 =

⎛

⎜⎝

3
1
1

−1

⎞

⎟⎠ .
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Solution:

k = 1: u1 ← x1

∥x1∥
=

1√
2

⎛

⎜⎝

1
0
0

−1

⎞

⎟⎠

k = 2: u2 ← x2 − (uT
1 x2)u1 =

⎛

⎜⎝

0
2
0
0

⎞

⎟⎠ , u2 ← u2

∥u2∥
=

⎛

⎜⎝

0
1
0
0

⎞

⎟⎠

k = 3: u3 ← x3 − (uT
1 x3)u1 − (uT

2 x3)u2 =

⎛

⎜⎝

1
0
1
1

⎞

⎟⎠ , u3 ← u3

∥u3∥
=

1√
3

⎛

⎜⎝

1
0
1
1

⎞

⎟⎠

Thus

u1 =
1√
2

⎛

⎜⎝

1
0
0

−1

⎞

⎟⎠ , u2 =

⎛

⎜⎝

0
1
0
0

⎞

⎟⎠ , u3 =
1√
3

⎛

⎜⎝

1
0
1
1

⎞

⎟⎠

is the desired orthonormal basis.

The Gram–Schmidt process frequently appears in the disguised form of a
matrix factorization. To see this, let Am×n =

(
a1 |a2 | · · · |an

)
be a matrix with

linearly independent columns. When Gram–Schmidt is applied to the columns
of A, the result is an orthonormal basis {q1,q2, . . . ,qn} for R (A), where

q1 =
a1

ν1
and qk =

ak −
∑k−1

i=1 ⟨qi ak⟩qi

νk
for k = 2, 3, . . . , n,

where ν1 = ∥a1∥ and νk =
∥∥ak −

∑k−1
i=1 ⟨qi ak⟩qi

∥∥ for k > 1. The above
relationships can be rewritten as

a1 = ν1q1 and ak = ⟨q1 ak⟩q1 + · · · + ⟨qk−1 ak⟩qk−1 + νkqk for k > 1,

which in turn can be expressed in matrix form by writing

(
a1 |a2 | · · · |an

)
=

(
q1 |q2 | · · · |qn

)

⎛

⎜⎜⎜⎜⎝

ν1 ⟨q1 a2⟩ ⟨q1 a3⟩ · · · ⟨q1 an⟩
0 ν2 ⟨q2 a3⟩ · · · ⟨q2 an⟩
0 0 ν3 · · · ⟨q3 an⟩
...

...
...

. . .
...

0 0 0 · · · νn

⎞

⎟⎟⎟⎟⎠
.

This says that it’s possible to factor a matrix with independent columns as
Am×n = Qm×nRn×n, where the columns of Q are an orthonormal basis for
R (A) and R is an upper-triangular matrix with positive diagonal elements.
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The factorization A = QR is called the QR factorization for A, and it is
uniquely determined by A (Exercise 5.5.8). When A and Q are not square,
some authors emphasize the point by calling A = QR the rectangular QR
factorization—the case when A and Q are square is further discussed on p. 345.
Below is a summary of the above observations.

QR Factorization
Every matrix Am×n with linearly independent columns can be uniquely
factored as A = QR in which the columns of Qm×n are an orthonor-
mal basis for R (A) and Rn×n is an upper-triangular matrix with
positive diagonal entries.

• The QR factorization is the complete “road map” of the Gram–
Schmidt process because the columns of Q =

(
q1 |q2 | · · · |qn

)
are

the result of applying the Gram–Schmidt procedure to the columns
of A =

(
a1 |a2 | · · · |an

)
and R is given by

R =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ν1 q∗
1a2 q∗

1a3 · · · q∗
1an

0 ν2 q∗
2a3 · · · q∗

2an

0 0 ν3 · · · q∗
3an

...
...

...
. . .

...
0 0 0 · · · νn

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

where ν1 = ∥a1∥ and νk =
∥∥ak −

∑k−1
i=1 ⟨qi ak⟩qi

∥∥ for k > 1.

Example 5.5.2
Problem: Determine the QR factors of

A =

⎛

⎝
0 −20 −14
3 27 −4
4 11 −2

⎞

⎠ .

Solution: Using the standard inner product for ℜn, apply the Gram–Schmidt
procedure to the columns of A by setting

q1 =
a1

ν1
and qk =

ak −
∑k−1

i=1

(
qT

i ak

)
qi

νk
for k = 2, 3,

where ν1 = ∥a1∥ and νk =
∥∥ak −

∑k−1
i=1

(
qT

i ak

)
qi

∥∥. The computation of these
quantities can be organized as follows.
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k = 1: r11 ← ∥a1∥ = 5 and q1 ← a1

r11
=

⎛

⎝
0

3/5
4/5

⎞

⎠

k = 2: r12 ← qT
1 a2 = 25

q2 ← a2 − r12q1 =

⎛

⎝
−20

12
−9

⎞

⎠

r22 ← ∥q2∥ = 25 and q2 ← q2

r22
=

1
25

⎛

⎝
−20

12
−9

⎞

⎠

k = 3: r13 ← qT
1 a3 = −4 and r23 ← qT

2 a3 = 10

q3 ← a3 − r13q1 − r23q2 =
2
5

⎛

⎝
−15
−16

12

⎞

⎠

r33 ← ∥q3∥ = 10 and q3 ← q3

r33
=

1
25

⎛

⎝
−15
−16

12

⎞

⎠

Therefore,

Q =
1
25

⎛

⎝
0 −20 −15

15 12 −16
20 −9 12

⎞

⎠ and R =

⎛

⎝
5 25 −4
0 25 10
0 0 10

⎞

⎠ .

We now have two important matrix factorizations, namely, the LU factor-
ization, discussed in §3.10 on p. 141 and the QR factorization. They are not the
same, but some striking analogies exist.

• Each factorization represents a reduction to upper-triangular form—LU by
Gaussian elimination, and QR by Gram–Schmidt. In particular, the LU fac-
torization is the complete “road map” of Gaussian elimination applied to a
square nonsingular matrix, whereas QR is the complete road map of Gram–
Schmidt applied to a matrix with linearly independent columns.

• When they exist, both factorizations A = LU and A = QR are uniquely
determined by A.

• Once the LU factors (assuming they exist) of a nonsingular matrix A are
known, the solution of Ax = b is easily computed—solve Ly = b by
forward substitution, and then solve Ux = y by back substitution (see
p. 146). The QR factors can be used in a similar manner. If A ∈ ℜn×n is
nonsingular, then QT = Q−1 (because Q has orthonormal columns), so
Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QT b, which is also a triangular
system that is solved by back substitution.
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While the LU and QR factors can be used in more or less the same way to
solve nonsingular systems, things are different for singular and rectangular cases
because Ax = b might be inconsistent, in which case a least squares solution
as described in §4.6, (p. 223) may be desired. Unfortunately, the LU factors of
A don’t exist when A is rectangular. And even if A is square and has an
LU factorization, the LU factors of A are not much help in solving the system
of normal equations AT Ax = AT b that produces least squares solutions. But
the QR factors of Am×n always exist as long as A has linearly independent
columns, and, as demonstrated in the following example, the QR factors provide
the least squares solution of an inconsistent system in exactly the same way as
they provide the solution of a consistent system.

Example 5.5.3
Application to the Least Squares Problem. If Ax = b is a possibly in-
consistent (real) system, then, as discussed on p. 226, the set of all least squares
solutions is the set of solutions to the system of normal equations

AT Ax = AT b. (5.5.5)

But computing AT A and then performing an LU factorization of AT A to solve
(5.5.5) is generally not advisable. First, it’s inefficient and, second, as pointed
out in Example 4.5.1, computing AT A with floating-point arithmetic can result
in a loss of significant information. The QR approach doesn’t suffer from either
of these objections. Suppose that rank (Am×n) = n (so that there is a unique
least squares solution), and let A = QR be the QR factorization. Because the
columns of Q are an orthonormal set, it follows that QT Q = In, so

AT A = (QR)T (QR) = RT QT QR = RT R. (5.5.6)

Consequently, the normal equations (5.5.5) can be written as

RT Rx = RT QT b. (5.5.7)

But RT is nonsingular (it is triangular with positive diagonal entries), so (5.5.7)
simplifies to become

Rx = QT b. (5.5.8)

This is just an upper-triangular system that is efficiently solved by back substi-
tution. In other words, most of the work involved in solving the least squares
problem is in computing the QR factorization of A. Finally, notice that

x = R−1QT b =
(
AT A

)−1
AT b

is the solution of Ax = b when the system is consistent as well as the least
squares solution when the system is inconsistent (see p. 214). That is, with the
QR approach, it makes no difference whether or not Ax = b is consistent
because in both cases things boil down to solving the same equation—namely,
(5.5.8). Below is a formal summary.
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Linear Systems and the QR Factorization
If rank (Am×n) = n, and if A = QR is the QR factorization, then the
solution of the nonsingular triangular system

Rx = QT b (5.5.9)

is either the solution or the least squares solution of Ax = b depending
on whether or not Ax = b is consistent.

It’s worthwhile to reemphasize that the QR approach to the least squares prob-
lem obviates the need to explicitly compute the product AT A. But if AT A is
ever needed, it is retrievable from the factorization AT A = RT R. In fact, this
is the Cholesky factorization of AT A as discussed in Example 3.10.7, p. 154.

The Gram–Schmidt procedure is a powerful theoretical tool, but it’s not a
good numerical algorithm when implemented in the straightforward or “classi-
cal” sense. When floating-point arithmetic is used, the classical Gram–Schmidt
algorithm applied to a set of vectors that is not already close to being an orthog-
onal set can produce a set of vectors that is far from being an orthogonal set. To
see this, consider the following example.

Example 5.5.4
Problem: Using 3-digit floating-point arithmetic, apply the classical Gram–
Schmidt algorithm to the set

x1 =

⎛

⎝
1

10−3

10−3

⎞

⎠ , x2 =

⎛

⎝
1

10−3

0

⎞

⎠ , x3 =

⎛

⎝
1
0

10−3

⎞

⎠ .

Solution:
k = 1: fl ∥x1∥ = 1, so u1 ← x1.

k = 2: fl
(
uT

1 x2

)
= 1, so

u2 ← x2 −
(
uT

1 x2

)
u1 =

⎛

⎝
0
0

−10−3

⎞

⎠ and u2 ← fl

(
u2

∥u2∥

)
=

⎛

⎝
0
0

−1

⎞

⎠ .

k = 3: fl
(
uT

1 x3

)
= 1 and fl

(
uT

2 x3

)
= −10−3, so

u3←x3−
(
uT

1 x3

)
u1−

(
uT

2 x3

)
u2=

⎛

⎝
0

−10−3

−10−3

⎞

⎠ and u3←fl

(
u3

∥u3∥

)
=

⎛

⎝
0

−.709
−.709

⎞

⎠.
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Therefore, classical Gram–Schmidt with 3-digit arithmetic returns

u1 =

⎛

⎝
1

10−3

10−3

⎞

⎠ , u2 =

⎛

⎝
0
0

−1

⎞

⎠ , u3 =

⎛

⎝
0

−.709
−.709

⎞

⎠ , (5.5.10)

which is unsatisfactory because u2 and u3 are far from being orthogonal.

It’s possible to improve the numerical stability of the orthogonalization pro-
cess by rearranging the order of the calculations. Recall from (5.5.4) that

uk =
(I − UkU∗

k)xk

∥(I − UkU∗
k)xk∥

, where U1 = 0 and Uk =
(
u1 |u2 | · · · |uk−1

)
.

If E1 = I and Ei = I−ui−1u∗
i−1 for i > 1, then the orthogonality of the ui ’s

insures that

Ek · · ·E2E1 = I − u1u∗
1 − u2u∗

2 − · · ·− uk−1u∗
k−1 = I − UkU∗

k,

so the Gram–Schmidt sequence can also be expressed as

uk =
Ek · · ·E2E1xk

∥Ek · · ·E2E1xk∥
for k = 1, 2, . . . , n.

This means that the Gram–Schmidt sequence can be generated as follows:

{x1,x2, . . . ,xn}
Normalize 1-st−−−−−−−−−→ {u1,x2, . . . ,xn}

Apply E2−−−−−−−−−→ {u1, E2x2, E2x3, . . . , E2xn}
Normalize 2-nd−−−−−−−−−→ {u1,u2, E2x3, . . . , E2xn}

Apply E3−−−−−−−−−→ {u1,u2, E3E2x3, . . . , E3E2xn}
Normalize 3-rd−−−−−−−−−→ {u1,u2,u3, E3E2x4, . . . , E3E2xn} ,

etc.

While there is no theoretical difference, this “modified” algorithm is numerically
more stable than the classical algorithm when floating-point arithmetic is used.
The kth step of the classical algorithm alters only the kth vector, but the kth

step of the modified algorithm “updates” all vectors from the kth through the
last, and conditioning the unorthogonalized tail in this way makes a difference.
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Modified Gram–Schmidt Algorithm
For a linearly independent set {x1,x2, . . . ,xn} ⊂ Cm×1, the Gram–
Schmidt sequence given on p. 309 can be alternately described as

uk =
Ek · · ·E2E1xk

∥Ek · · ·E2E1xk∥
with E1 = I, Ei = I − ui−1u∗

i−1 for i > 1,

and this sequence is generated by the following algorithm.

For k = 1: u1 ← x1/ ∥x1∥ and uj ← xj for j = 2, 3, . . . , n

For k > 1: uj ← Ekuj = uj −
(
u∗

k−1uj

)
uk−1 for j = k, k + 1, . . . , n

uk ← uk/ ∥uk∥

(An alternate implementation is given in Exercise 5.5.10.)

To see that the modified version of Gram–Schmidt can indeed make a dif-
ference when floating-point arithmetic is used, consider the following example.

Example 5.5.5
Problem: Use 3-digit floating-point arithmetic, and apply the modified Gram–
Schmidt algorithm to the set given in Example 5.5.4 (p. 314), and then compare
the results of the modified algorithm with those of the classical algorithm.

Solution: x1 =

⎛

⎝
1

10−3

10−3

⎞

⎠ , x2 =

⎛

⎝
1

10−3

0

⎞

⎠ , x3 =

⎛

⎝
1
0

10−3

⎞

⎠ .

k = 1: fl ∥x1∥ = 1, so {u1,u2,u3} ← {x1,x2,x3} .

k = 2: fl
(
uT

1 u2

)
= 1 and fl

(
uT

1 u3

)
= 1, so

u2 ← u2 −
(
uT

1 u2

)
u1 =

⎛

⎝
0
0

−10−3

⎞

⎠, u3 ← u3 −
(
uT

1 u3

)
u1 =

⎛

⎝
0

−10−3

0

⎞

⎠,

and

u2 ← u2

∥u2∥
=

⎛

⎝
0
0

−1

⎞

⎠ .

k = 3: uT
2 u3 = 0, so

u3 ← u3 −
(
uT

2 u3

)
u2 =

⎛

⎝
0

−10−3

0

⎞

⎠ and u3 ← u3

∥u3∥
=

⎛

⎝
0

−1
0

⎞

⎠ .
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Thus the modified Gram–Schmidt algorithm produces

u1 =

⎛

⎝
1

10−3

10−3

⎞

⎠ , u2 =

⎛

⎝
0
0

−1

⎞

⎠ , u3 =

⎛

⎝
0

−1
0

⎞

⎠ , (5.5.11)

which is as good as one can expect using 3-digit arithmetic. Comparing (5.5.11)
with the result (5.5.10) obtained in Example 5.5.4 illuminates the advantage
possessed by modified Gram–Schmidt algorithm over the classical algorithm.

Below is a summary of some facts concerning the modified Gram–Schmidt
algorithm compared with the classical implementation.

Summary

• When the Gram–Schmidt procedures (classical or modified) are ap-
plied to the columns of A using exact arithmetic, each produces an
orthonormal basis for R (A).

• For computing a QR factorization in floating-point arithmetic, the
modified algorithm produces results that are at least as good as and
often better than the classical algorithm, but the modified algorithm
is not unconditionally stable—there are situations in which it fails
to produce a set of columns that are nearly orthogonal.

• For solving the least square problem with floating-point arithmetic,
the modified procedure is a numerically stable algorithm in the sense
that the method described in Example 5.5.3 returns a result that is
the exact solution of a nearby least squares problem. However, the
Householder method described on p. 346 is just as stable and needs
slightly fewer arithmetic operations.

Exercises for section 5.5

5.5.1. Let S = span

⎧
⎪⎨

⎪⎩
x1 =

⎛

⎜⎝

1
1
1

−1

⎞

⎟⎠ , x2 =

⎛

⎜⎝

2
−1
−1

1

⎞

⎟⎠ , x3 =

⎛

⎜⎝

−1
2
2
1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
.

(a) Use the classical Gram–Schmidt algorithm (with exact arith-
metic) to determine an orthonormal basis for S.

(b) Verify directly that the Gram–Schmidt sequence produced in
part (a) is indeed an orthonormal basis for S.

(c) Repeat part (a) using the modified Gram–Schmidt algorithm,
and compare the results.
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5.5.2. Use the Gram–Schmidt procedure to find an orthonormal basis for the

four fundamental subspaces of A =
(

1 −2 3 −1
2 −4 6 −2
3 −6 9 −3

)
.

5.5.3. Apply the Gram–Schmidt procedure with the standard inner product

for C3 to
{(

i
i
i

)
,

(
0
i
i

)
,

(
0
0
i

)}
.

5.5.4. Explain what happens when the Gram–Schmidt process is applied to an
orthonormal set of vectors.

5.5.5. Explain what happens when the Gram–Schmidt process is applied to a
linearly dependent set of vectors.

5.5.6. Let A =

⎛

⎝
1 0 −1
1 2 1
1 1 −3
0 1 1

⎞

⎠ and b =

⎛

⎝
1
1
1
1

⎞

⎠.

(a) Determine the rectangular QR factorization of A.
(b) Use the QR factors from part (a) to determine the least squares

solution to Ax = b.

5.5.7. Given a linearly independent set of vectors S = {x1,x2, . . . ,xn} in an
inner-product space, let Sk = span {x1,x2, . . . ,xk} for k = 1, 2, . . . , n.
Give an induction argument to prove that if Ok = {u1,u2, . . . ,uk} is
the Gram–Schmidt sequence defined in (5.5.2), then Ok is indeed an or-
thonormal basis for Sk = span {x1,x2, . . . ,xk} for each k = 1, 2, . . . , n.

5.5.8. Prove that if rank (Am×n) = n, then the rectangular QR factorization
of A is unique. That is, if A = QR, where Qm×n has orthonormal
columns and Rn×n is upper triangular with positive diagonal entries,
then Q and R are unique. Hint: Recall Example 3.10.7, p. 154.

5.5.9. (a) Apply classical Gram–Schmidt with 3-digit floating-point arith-

metic to
{
x1 =

(
1
0

10− 3

)
, x2 =

(
1
0
0

)
, x3 =

(
1

10− 3

0

)}
. You may

assume that fl
(√

2
)

= 1.41.

(b) Again using 3-digit floating-point arithmetic, apply the modified
Gram–Schmidt algorithm to {x1, x2, x3} , and compare the re-
sult with that of part (a).
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5.5.10. Depending on how the inner products rij are defined, verify that the fol-
lowing code implements both the classical and modified Gram–Schmidt
algorithms applied to a set of vectors {x1,x2, . . . ,xn} .

For j = 1 to n
uj ←− xj

For i = 1 to j − 1

rij ←−
{
⟨ui xj⟩ (classical Gram–Schmidt)
⟨ui uj⟩ (modified Gram–Schmidt)

uj ←− uj − rijui

End

rjj ←− ∥uj∥
If rjj = 0

quit (because xj ∈ span {x1,x2, . . . ,xj−1} )
Else uj ←− uj/rjj

End

If exact arithmetic is used, will the inner products rij be the same for
both implementations?

5.5.11. Let V be the inner-product space of real-valued continuous functions
defined on the interval [−1, 1], where the inner product is defined by

⟨f g⟩ =
∫ 1

−1
f(x)g(x)dx,

and let S be the subspace of V that is spanned by the three linearly
independent polynomials q0 = 1, q1 = x, q2 = x2.

(a) Use the Gram–Schmidt process to determine an orthonormal set
of polynomials {p0, p1, p2} that spans S. These polynomials
are the first three normalized Legendre

45
polynomials.

(b) Verify that pn satisfies Legendre’s differential equation

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

for n = 0, 1, 2. This equation and its solutions are of consider-
able importance in applied mathematics.

45
Adrien–Marie Legendre (1752–1833) was one of the most eminent French mathematicians of
the eighteenth century. His primary work in higher mathematics concerned number theory
and the study of elliptic functions. But he was also instrumental in the development of the
theory of least squares, and some people believe that Legendre should receive the credit that
is often afforded to Gauss for the introduction of the method of least squares. Like Gauss and
many other successful mathematicians, Legendre spent substantial time engaged in diligent
and painstaking computation. It is reported that in 1824 Legendre refused to vote for the
government’s candidate for Institut National, so his pension was stopped, and he died in
poverty.
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5.4.17. Choose any unit vector ei for y. The angle between e and ei approaches π/2
as n→∞, but eT ei = 1 for all n.

5.4.18. If y is negatively correlated to x, then zx = −zy, but ∥zx − zy∥2 = 2
√

n
gives no indication of the fact that zx and zy are on the same line. Continuity
therefore dictates that when y ≈ β0e + β1x with β1 < 0, then zx ≈ −zy, but
∥zx − zy∥2 ≈ 2

√
n gives no hint that zx and zy are almost on the same line.

If we want to use norms to gauge linear correlation, we should use

min
{
∥zx − zy∥2 , ∥zx + zy∥2

}
.

5.4.19. (a) cos θ = 1 =⇒ ⟨x y⟩ = ∥x∥ ∥y∥ > 0, and the straightforward extension of
Exercise 5.1.9 guarantees that

y =
⟨x y⟩
∥x∥2

x, and clearly
⟨x y⟩
∥x∥2

> 0.

Conversely, if y = αx for α > 0, then ⟨x y⟩ = α ∥x∥2 =⇒ cos θ = 1.

(b) cos θ = −1 =⇒ ⟨x y⟩ = −∥x∥ ∥y∥ < 0, so the generalized version of
Exercise 5.1.9 guarantees that

y =
⟨x y⟩
∥x∥2

x, and in this case
⟨x y⟩
∥x∥2

< 0.

Conversely, if y = αx for α < 0, then ⟨x y⟩ = α ∥x∥2 , so

cos θ =
α ∥x∥2

|α| ∥x∥2
= −1.

5.4.20. F (t) =
∑∞

n (−1)n 2
n sinnt.

Solutions for exercises in section 5. 5

5.5.1. (a)

u1 =
1
2

⎛

⎜⎝

1
1
1
−1

⎞

⎟⎠ , u2 =
1

2
√

3

⎛

⎜⎝

3
−1
−1

1

⎞

⎟⎠ , u3 =
1√
6

⎛

⎜⎝

0
1
1
2

⎞

⎟⎠

(b) First verify this is an orthonormal set by showing uT
i uj =

{
1 when i = j,
0 when i ̸= j.

To show that the xi ’s and the ui ’s span the same space, place the xi ’s as rows
in a matrix A, and place the ui ’s as rows in a matrix B, and then verify that
EA = EB—recall Example 4.2.2.
(c) The result should be the same as in part (a).
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5.5.2. First reduce A to EA to determine a “regular” basis for each space.

R (A) = span

⎧
⎨

⎩

⎛

⎝
1
2
3

⎞

⎠

⎫
⎬

⎭ N
(
AT
)

= span

⎧
⎨

⎩

⎛

⎝
−2

1
0

⎞

⎠ ,

⎛

⎝
−3

0
1

⎞

⎠

⎫
⎬

⎭

R
(
AT
)

= span

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

1
−2

3
−1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
N (A) = span

⎧
⎪⎨

⎪⎩

⎛

⎜⎝

2
1
0
0

⎞

⎟⎠ ,

⎛

⎜⎝

−3
0
1
0

⎞

⎟⎠ ,

⎛

⎜⎝

1
0
0
1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

Now apply Gram–Schmidt to each of these.

R (A) = span

⎧
⎨

⎩
1√
14

⎛

⎝
1
2
3

⎞

⎠

⎫
⎬

⎭ N
(
AT
)

= span

⎧
⎨

⎩
1√
5

⎛

⎝
−2

1
0

⎞

⎠ ,
1√
70

⎛

⎝
−3
−6

5

⎞

⎠

⎫
⎬

⎭

R
(
AT
)

= span

⎧
⎪⎨

⎪⎩
1√
15

⎛

⎜⎝

1
−2

3
−1

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

N (A) = span

⎧
⎪⎨

⎪⎩
1√
5

⎛

⎜⎝

2
1
0
0

⎞

⎟⎠ ,
1√
70

⎛

⎜⎝

−3
6
5
0

⎞

⎟⎠ ,
1√
210

⎛

⎜⎝

1
−2

3
14

⎞

⎟⎠

⎫
⎪⎬

⎪⎭

5.5.3.

u1 =
1√
3

⎛

⎝
i
i
i

⎞

⎠ , u2 =
1√
6

⎛

⎝
−2i

i
i

⎞

⎠ , u3 =
1√
2

⎛

⎝
0
−i

i

⎞

⎠

5.5.4. Nothing! The resulting orthonormal set is the same as the original.
5.5.5. It breaks down at the first vector such that xk ∈ span {x1,x2, . . . ,xk−1} because

if
xk ∈ span {x1,x2, . . . ,xk−1} = span {u1,u2, . . . ,uk−1} ,

then the Fourier expansion of xk with respect to span {u1,u2, . . . ,uk−1} is

xk =
k−1∑

i=1

⟨ui xk⟩ui,

and therefore

uk =

(
xk −

∑k−1
i=1 ⟨ui xk⟩ui

)

∥∥∥
(
xk −

∑k−1
i=1 ⟨ui xk⟩ui

)∥∥∥
=

0
∥0∥
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is not defined.
5.5.6. (a) The rectangular QR factors are

Q =

⎛

⎜⎝

1/
√

3 −1/
√

3 1/
√

6
1/
√

3 1/
√

3 1/
√

6
1/
√

3 0 −2/
√

6
0 1/

√
3 0

⎞

⎟⎠ and R =

⎛

⎝

√
3
√

3 −
√

3
0
√

3
√

3
0 0

√
6

⎞

⎠ .

(b) Following Example 5.5.3, solve Rx = QT b to get x =

⎛

⎝
2/3
1/3
0

⎞

⎠ .

5.5.7. For k = 1, there is nothing to prove. For k > 1, assume that Ok is an
orthonormal basis for Sk. First establish that Ok+1 must be an orthonormal
set. Orthogonality follows because for each j < k + 1,

⟨uj uk+1⟩ =

〈

uj
1

νk+1

(

xk+1 −
k∑

i=1

⟨ui xk+1⟩ui

)〉

=
1

νk+1

(

⟨uj xk+1⟩ −
〈

uj

k∑

i=1

⟨ui xk+1⟩ui

〉)

=
1

νk+1

(

⟨uj xk+1⟩ −
k∑

i=1

⟨ui xk+1⟩ ⟨uj ui⟩
)

=
1

νk+1
(⟨uj xk+1⟩ − ⟨uj xk+1⟩) = 0.

This together with the fact that each ui has unit norm means that Ok+1 is an
orthonormal set. Now assume Ok is a basis for Sk, and prove that Ok+1 is a
basis for Sk+1. If x ∈ Sk+1, then x can be written as a combination

x =
k+1∑

i=1

αixi =

(
k∑

i=1

αixi

)

+ αk+1xk+1,

where
∑k

i=1 αixi ∈ Sk = span (Ok) ⊂ span (Ok+1) . Couple this together with
the fact that

xk+1 = νk+1uk+1 +
k∑

i=1

⟨ui xk+1⟩ui ∈ span (Ok+1)

to conclude that x ∈ span (Ok+1) . Consequently, Ok+1 spans Sk+1, and there-
fore Ok+1 is a basis for Sk+1 because orthonormal sets are always linearly
independent.
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5.5.8. If A = Q1R1 = Q2R2 are two rectangular QR factorizations, then (5.5.6)
implies AT A = RT

1 R1 = RT
2 R2. It follows from Example 3.10.7 that AT A is

positive definite, and R1 = R2 because the Cholesky factorization of a positive
definite matrix is unique. Therefore, Q1 = AR−1

1 = AR−1
2 = Q2.

5.5.9. (a) Step 1: fl ∥x1∥ = 1, so u1 ← x1.

Step 2: uT
1 x2 = 1, so

u2 ← x2 −
(
uT

1 x2

)
u1 =

⎛

⎝
0
0

−10−3

⎞

⎠ and u2 ←
u2

∥u2∥
=

⎛

⎝
0
0
−1

⎞

⎠ .

Step 3: uT
1 x3 = 1 and uT

2 x3 = 0, so

u3 ← x3−
(
uT

1 x3

)
u1−

(
uT

2 x3

)
u2 =

⎛

⎝
0

10−3

−10−3

⎞

⎠ and u3 ←
u3

∥u3∥
=

⎛

⎝
0
.709
−.709

⎞

⎠ .

Therefore, the result of the classical Gram–Schmidt algorithm using 3-digit arith-
metic is

u1 =

⎛

⎝
1
0

10−3

⎞

⎠ , u2 =

⎛

⎝
0
0
−1

⎞

⎠ , u3 =

⎛

⎝
0
.709
−.709

⎞

⎠ ,

which is not very good because u2 and u3 are not even close to being orthog-
onal.
(b) Step 1: fl ∥x1∥ = 1, so

{u1,u2,u3}← {x1,x2,x3} .

Step 2: uT
1 u2 = 1 and uT

1 u3 = 1, so

u2 ← u2 −
(
uT

1 u2

)
u1 =

⎛

⎝
0
0

−10−3

⎞

⎠, u3 ← u3 −
(
uT

1 u3

)
u1 =

⎛

⎝
0

10−3

−10−3

⎞

⎠,

and then

u2 ←
u2

∥u2∥
=

⎛

⎝
0
0
−1

⎞

⎠ .

Step 3: uT
2 u3 = 10−3, so

u3 ← u3 −
(
uT

2 u3

)
u2 =

⎛

⎝
0

10−3

0

⎞

⎠ and u3 ←
u3

∥u3∥
=

⎛

⎝
0
1
0

⎞

⎠ .
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Thus the modified Gram–Schmidt algorithm produces

u1 =

⎛

⎝
1
0

10−3

⎞

⎠ , u2 =

⎛

⎝
0
0
−1

⎞

⎠ , u3 =

⎛

⎝
0
1
0

⎞

⎠ ,

which is as close to being an orthonormal set as one could reasonably hope to
obtain by using 3-digit arithmetic.

5.5.10. Yes. In both cases rij is the (i, j)-entry in the upper-triangular matrix R in the
QR factorization.

5.5.11. p0(x) = 1/
√

2, p1(x) =
√

3/2 x, p2(x) =
√

5/8 (3x2 − 1)

Solutions for exercises in section 5. 6

5.6.1. (a), (c), and (d).

5.6.2. Yes, because U∗U =
(

1 0
0 1

)
.

5.6.3. (a) Eight: D =

⎛

⎝
± 1 0 0
0 ± 1 0
0 0 ± 1

⎞

⎠ (b) 2n : D =

⎛

⎜⎜⎝

± 1 0 · · · 0
0 ± 1 · · · 0
...

...
. . .

...
0 0 · · · ± 1

⎞

⎟⎟⎠

(c) There are infinitely many because each diagonal entry can be any point on the
unit circle in the complex plane—these matrices have the form given in part (d)
of Exercise 5.6.1.

5.6.4. (a) When α2 + β2 = 1/2. (b) When α2 + β2 = 1.
5.6.5. (a) (UV)∗(UV) = V∗U∗UV = V∗V = I.

(b) Consider I + (−I) = 0.

(c) (
U 0
0 V

)∗(U 0
0 V

)
=
(

U∗ 0
0 V∗

)(
U 0
0 V

)

=
(

U∗U 0
0 V∗V

)

=
(

I 0
0 I

)
.

5.6.6. Recall from (3.7.8) or (4.2.10) that (I+A)−1 exists if and only if N (I + A) = 0,
and write x ∈ N (I + A) =⇒ x = −Ax =⇒ x∗x = −x∗Ax. But
taking the conjugate transpose of both sides yields x∗x = −x∗A∗x = x∗Ax,
so x∗x = 0, and thus x = 0. Replacing A by −A in Exercise 3.7.6gives
A(I + A)−1 = (I + A)−1A, so

(I−A)(I + A)−1 = (I + A)−1 −A(I + A)−1

= (I + A)−1 − (I + A)−1A = (I + A)−1(I−A).


