
320 Chapter 5 Norms, Inner Products, and Orthogonality

5.6 UNITARY AND ORTHOGONAL MATRICES

The purpose of this section is to examine square matrices whose columns (or
rows) are orthonormal. The standard inner product and the euclidean 2-norm
are the only ones used in this section, so distinguishing subscripts are omitted.

Unitary and Orthogonal Matrices
• A unitary matrix is defined to be a complex matrix Un×n whose

columns (or rows) constitute an orthonormal basis for Cn.

• An orthogonal matrix is defined to be a real matrix Pn×n whose
columns (or rows) constitute an orthonormal basis for ℜn.

Unitary and orthogonal matrices have some nice features, one of which is
the fact that they are easy to invert. To see why, notice that the columns of
Un×n =

(

u1 |u2 | · · · |un

)

are an orthonormal set if and only if

[U∗U]ij = u∗
i uj =

{

1 when i = j,
0 when i ≠ j,

⇐⇒ U∗U = I ⇐⇒ U−1 = U∗.

Notice that because U∗U = I ⇐⇒ UU∗ = I, the columns of U are orthonor-
mal if and only if the rows of U are orthonormal, and this is why the definitions
of unitary and orthogonal matrices can be stated either in terms of orthonormal
columns or orthonormal rows.

Another nice feature is that multiplication by a unitary matrix doesn’t
change the length of a vector. Only the direction can be altered because

∥Ux∥2 = x∗U∗Ux = x∗x = ∥x∥2 ∀ x ∈ Cn. (5.6.1)

Conversely, if (5.6.1) holds, then U must be unitary. To see this, set x = ei

in (5.6.1) to observe u∗
i ui = 1 for each i, and then set x = ej + ek for j ≠ k

to obtain 0 = u∗
juk + u∗

kuj = 2 Re (u∗
juk) . By setting x = ej + iek in (5.6.1)

it also follows that 0 = 2 Im (u∗
juk) , so u∗

juk = 0 for each j ≠ k, and thus
(5.6.1) guarantees that U is unitary.

In the case of orthogonal matrices, everything is real so that (⋆)∗ can be
replaced by (⋆)T . Below is a summary of these observations.
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Characterizations
• The following statements are equivalent to saying that a complex

matrix Un×n is unitary.
◃ U has orthonormal columns.
◃ U has orthonormal rows.
◃ U−1 = U∗.

◃ ∥Ux∥2 = ∥x∥2 for every x ∈ Cn×1.

• The following statements are equivalent to saying that a real matrix
Pn×n is orthogonal.
◃ P has orthonormal columns.
◃ P has orthonormal rows.
◃ P−1 = PT .

◃ ∥Px∥2 = ∥x∥2 for every x ∈ ℜn×1.

Example 5.6.1
• The identity matrix I is an orthogonal matrix.
• All permutation matrices (products of elementary interchange matrices) are

orthogonal—recall Exercise 3.9.4.
• The matrix

P =

⎛

⎝
1/

√
2 1/

√
3 −1/

√
6

−1/
√

2 1/
√

3 −1/
√

6
0 1/

√
3 2/

√
6

⎞

⎠

is an orthogonal matrix because PT P = PPT = I or, equivalently, because
the columns (and rows) constitute an orthonormal set.

• The matrix U = 1
2

(
1 + i −1 + i
1 + i 1 − i

)
is unitary because U∗U = UU∗ = I or,

equivalently, because the columns (and rows) are an orthonormal set.
• An orthogonal matrix can be considered to be unitary, but a unitary matrix

is generally not orthogonal.

In general, a linear operator T on a vector space V with the property that
∥Tx∥ = ∥x∥ for all x ∈ V is called an isometry on V. The isometries on ℜn

are precisely the orthogonal matrices, and the isometries on Cn are the unitary
matrices. The term “isometry” has an advantage in that it can be used to treat
the real and complex cases simultaneously, but for clarity we will often revert
back to the more cumbersome “orthogonal” and “unitary” terminology.
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The geometrical concepts of projection, reflection, and rotation are among
the most fundamental of all linear transformations in ℜ2 and ℜ3 (see Example
4.7.1 for three simple examples), so pursuing these ideas in higher dimensions
is only natural. The reflector and rotator given in Example 4.7.1 are isometries
(because they preserve length), but the projector is not. We are about to see
that the same is true in more general settings.

Elementary Orthogonal Projectors
For a vector u ∈ Cn×1 such that ∥u∥ = 1, a matrix of the form

Q = I −uu∗ (5.6.2)

is called an elementary orthogonal projector. More general projec-
tors are discussed on pp. 386 and 429.

To understand the nature of elementary projectors consider the situation in
ℜ3. Suppose that ∥u3×1∥ = 1, and let u⊥ denote the space (the plane through
the origin) consisting of all vectors that are perpendicular to u —we call u⊥ the
orthogonal complement of u (a more general definition appears on p. 403).
The matrix Q = I−uuT is the orthogonal projector onto u⊥ in the sense that
Q maps each x ∈ ℜ3×1 to its orthogonal projection in u⊥ as shown in Figure
5.6.1.

u ⊥

x

Qx = (I - uuT)x

u

(I - Q)x = uuTx

0

Figure 5.6.1

To see this, observe that each x can be resolved into two components

x = (I −Q)x + Qx, where (I −Q)x ⊥ Qx.

The vector (I −Q)x = u(uT x) is on the line determined by u, and Qx is in
the plane u⊥ because uT Qx = 0.
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The situation is exactly as depicted in Figure 5.6.1. Notice that (I−Q)x =
uuT x is the orthogonal projection of x onto the line determined by u and∥∥uuT x

∥∥ = |uT x|. This provides a nice interpretation of the magnitude of the
standard inner product. Below is a summary.

Geometry of Elementary Projectors
For vectors u,x ∈ Cn×1 such that ∥u∥ = 1,

• (I − uu∗)x is the orthogonal projection of x onto the orthogonal
complement u⊥ , the space of all vectors orthogonal to u; (5.6.3)

• uu∗x is the orthogonal projection of x onto the one-dimensional
space span {u} ; (5.6.4)

• |u∗x| represents the length of the orthogonal projection of x onto
the one-dimensional space span {u} . (5.6.5)

In passing, note that elementary projectors are never isometries—they can’t
be because they are not unitary matrices in the complex case and not orthogonal
matrices in the real case. Furthermore, isometries are nonsingular but elementary
projectors are singular.

Example 5.6.2
Problem: Determine the orthogonal projection of x onto span {u} , and then

find the orthogonal projection of x onto u⊥ for x =
(

2
0
1

)
and u =

(
2

−1
3

)
.

Solution: We cannot apply (5.6.3) and (5.6.4) directly because ∥u∥ ̸= 1, but
this is not a problem because

∥∥∥∥
u

∥u∥

∥∥∥∥ = 1, span {u} = span

{
u
∥u∥

}
, and u⊥ =

(
u
∥u∥

)⊥
.

Consequently, the orthogonal projection of x onto span {u} is given by

(
u

∥u∥

) (
u
∥u∥

)T

x =
uuT

uT u
x =

1
2

⎛

⎝
2

−1
3

⎞

⎠ ,

and the orthogonal projection of x onto u⊥ is

(
I − uuT

uT u

)
x = x − uuT x

uT u
=

1
2

⎛

⎝
2
1

−1

⎞

⎠ .
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There is nothing special about the numbers in this example. For every nonzero
vector u ∈ Cn×1, the orthogonal projectors onto span {u} and u⊥ are

Pu =
uu∗

u∗u
and Pu⊥ = I − uu∗

u∗u
. (5.6.6)

Elementary Reflectors
For un×1 ̸= 0, the elementary reflector about u⊥ is defined to be

R = I − 2
uu∗

u∗u
(5.6.7)

or, equivalently,
R = I − 2uu∗ when ∥u∥ = 1. (5.6.8)

Elementary reflectors are also called Householder transformations,
46and

they are analogous to the simple reflector given in Example 4.7.1. To understand
why, suppose u ∈ ℜ3×1 and ∥u∥ = 1 so that Q = I −uuT is the orthogonal
projector onto the plane u⊥ . For each x ∈ ℜ3×1, Qx is the orthogonal pro-
jection of x onto u⊥ as shown in Figure 5.6.1. To locate Rx = (I − 2uuT )x,
notice that Q(Rx) = Qx. In other words, Qx is simultaneously the orthogo-
nal projection of x onto u⊥ as well as the orthogonal projection of Rx onto
u⊥ . This together with ∥x −Qx∥ = |uT x| = ∥Qx −Rx∥ implies that Rx
is the reflection of x about the plane u⊥ , exactly as depicted in Figure 5.6.2.
(Reflections about more general subspaces are examined in Exercise 5.13.21.)

x

Rx

Qx

|| x - Qx ||

|| Qx - Rx ||0

u ⊥u

Figure 5.6.2

46
Alston Scott Householder (1904–1993) was one of the first people to appreciate and promote
the use of elementary reflectors for numerical applications. Although his 1937 Ph.D. disserta-
tion at University of Chicago concerned the calculus of variations, Householder’s passion was
mathematical biology, and this was the thrust of his career until it was derailed by the war
effort in 1944. Householder joined the Mathematics Division of Oak Ridge National Labora-
tory in 1946 and became its director in 1948. He stayed at Oak Ridge for the remainder of his
career, and he became a leading figure in numerical analysis and matrix computations. Like
his counterpart J. Wallace Givens (p. 333) at the Argonne National Laboratory, Householder
was one of the early presidents of SIAM.
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Properties of Elementary Reflectors
• All elementary reflectors R are unitary, hermitian, and involutory

( R2 = I ). That is,
R = R∗ = R−1. (5.6.9)

• If xn×1 is a vector whose first entry is x1 ̸= 0, and if

u = x ± µ ∥x∥ e1, where µ =
{

1 if x1 is real,
x1/|x1| if x1 is not real, (5.6.10)

is used to build the elementary reflector R in (5.6.7), then

Rx = ∓ µ ∥x∥ e1. (5.6.11)

In other words, this R “reflects” x onto the first coordinate axis.
Computational Note: To avoid cancellation when using floating-
point arithmetic for real matrices, set u = x + sign(x1) ∥x∥ e1.

Proof of (5.6.9). It is clear that R = R∗, and the fact that R = R−1 is
established simply by verifying that R2 = I.

Proof of (5.6.10). Observe that R = I − 2ûû∗, where û = u/ ∥u∥ .

Proof of (5.6.11). Write Rx = x − 2uu∗x/u∗u = x − (2u∗x/u∗u)u and verify
that 2u∗x = u∗u to conclude Rx = x −u = ∓ µ ∥x∥ e1.

Example 5.6.3
Problem: Given x ∈ Cn×1 such that ∥x∥ = 1, construct an orthonormal basis
for Cn that contains x.

Solution: An efficient solution is to build a unitary matrix that contains x as
its first column. Set u = x± µe1 in R = I−2(uu∗/u∗u) and notice that (5.6.11)
guarantees Rx = ∓ µe1, so multiplication on the left by R (remembering that
R2 = I) produces x = ∓ µRe1 = [∓ µR]∗1 . Since | ∓ µ| = 1, U = ∓ µR
is a unitary matrix with U∗1 = x, so the columns of U provide the desired
orthonormal basis. For example, to construct an orthonormal basis for ℜ4 that
includes x = (1/3) (−1 2 0 − 2 )T , set

u = x − e1 =
1
3

⎛

⎜⎝

−4
2
0

−2

⎞

⎟⎠ and compute R = I − 2
uuT

uT u
=

1
3

⎛

⎜⎝

−1 2 0 −2
2 2 0 1
0 0 3 0

−2 1 0 2

⎞

⎟⎠ .

The columns of R do the job.
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Now consider rotation, and begin with a basic problem in ℜ2. If a nonzero
vector u = (u1, u2) is rotated counterclockwise through an angle θ to produce
v = (v1, v2), how are the coordinates of v related to the coordinates of u? To
answer this question, refer to Figure 5.6.3, and use the fact that ∥u∥ = ν = ∥v∥
(rotation is an isometry) together with some elementary trigonometry to obtain

v1 = ν cos(φ + θ) = ν(cos θ cos φ − sin θ sin φ),
v2 = ν sin(φ + θ) = ν(sin θ cos φ + cos θ sin φ).

(5.6.12)

u = ( u1 , u2 )

v = ( v1 , v2 )

θ

φ

Figure 5.6.3

Substituting cosφ = u1/ν and sinφ = u2/ν into (5.6.12) yields

v1 = (cos θ)u1 − (sin θ)u2,
v2 = (sin θ)u1 + (cos θ)u2,

or
(

v1

v2

)
=

(
cos θ −sin θ
sin θ cos θ

) (
u1

u2

)
. (5.6.13)

In other words, v = Pu, where P is the rotator (rotation operator)

P =
(

cos θ −sin θ
sin θ cos θ

)
. (5.6.14)

Notice that P is an orthogonal matrix because PT P = I. This means that if
v = Pu, then u = PT v, and hence PT is also a rotator, but in the opposite
direction of that associated with P. That is, PT is the rotator associated with
the angle −θ. This is confirmed by the fact that if θ is replaced by −θ in
(5.6.14), then PT is produced.

Rotating vectors in ℜ3 around any one of the coordinate axes is similar.
For example, consider rotation around the z-axis. Suppose that v = (v1, v2, v3)
is obtained by rotating u = (u1, u2, u3) counterclockwise 47through an angle
θ around the z-axis. Just as before, the goal is to determine the relationship
between the coordinates of u and v. Since we are rotating around the z-axis,

47
This is from the perspective of looking down the z -axis onto the xy -plane.
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it is evident (see Figure 5.6.4) that the third coordinates are unaffected—i.e.,
v3 = u3. To see how the xy-coordinates of u and v are related, consider the
orthogonal projections

up = (u1, u2, 0) and vp = (v1, v2, 0)

of u and v onto the xy-plane.

x

y

z

v = (v1, v2, v3)

vp = (v1, v2, 0)

u = (u1, u2, u3)

up = (u1, u2, 0) θ

θ

Figure 5.6.4

It’s apparent from Figure 5.6.4 that the problem has been reduced to rotation
in the xy-plane, and we already know how to do this. Combining (5.6.13) with
the fact that v3 = u3 produces the equation

⎛

⎝
v1

v2

v3

⎞

⎠ =

⎛

⎝
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

⎛

⎝
u1

u2

u3

⎞

⎠ ,

so

Pz =

⎛

⎝
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

is the matrix that rotates vectors in ℜ3 counterclockwise around the z-axis
through an angle θ. It is easy to verify that Pz is an orthogonal matrix and
that P−1

z = PT
z rotates vectors clockwise around the z-axis.

By using similar techniques, it is possible to derive orthogonal matrices that
rotate vectors around the x-axis or around the y-axis. Below is a summary of
these rotations in ℜ3.
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Rotations in R3

A vector u ∈ ℜ3 can be rotated counterclockwise through an angle θ
around a coordinate axis by means of a multiplication P⋆u in which
P⋆ is an appropriate orthogonal matrix as described below.

Rotation around the x-Axis

Px =

⎛

⎝

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎞

⎠

x

y

z

θ

Rotation around the y-Axis

Py =

⎛

⎝

cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

⎞

⎠ θ

x

y

z

Rotation around the z-Axis

Pz =

⎛

⎝

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎞

⎠

x

y

z

θ

Note: The minus sign appears above the diagonal in Px and Pz, but
below the diagonal in Py. This is not a mistake—it’s due to the orien-
tation of the positive x-axis with respect to the yz-plane.

Example 5.6.4
3-D Rotational Coordinates. Suppose that three counterclockwise rotations
are performed on the three-dimensional solid shown in Figure 5.6.5. First rotate
the solid in View (a) 90◦ around the x-axis to obtain the orientation shown
in View (b). Then rotate View (b) 45◦ around the y-axis to produce View (c)
and, finally, rotate View (c) 60◦ around the z-axis to end up with View (d).
You can follow the process by watching how the notch, the vertex v, and the
lighter shaded face move.
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x

y

z

View (a)

π/2

v x

y

z

View (b)

π/4

v

View (c)

y

z

x

π/3

v

x

y

z

View (d)

v

Figure 5.6.5

Problem: If the coordinates of each vertex in View (a) are specified, what are
the coordinates of each vertex in View (d)?

Solution: If Px is the rotator that maps points in View (a) to corresponding
points in View (b), and if Py and Pz are the respective rotators carrying View
(b) to View (c) and View (c) to View (d), then

Px =

⎛

⎝
1 0 0
0 0 −1
0 1 0

⎞

⎠, Py =
1√
2

⎛

⎝
1 0 1
0

√
2 0

−1 0 1

⎞

⎠, Pz =

⎛

⎝
1/2 −

√
3/2 0√

3/2 1/2 0
0 0 1

⎞

⎠,

so

P = PzPyPx =
1

2
√

2

⎛

⎝
1 1

√
6√

3
√

3 −
√

2
−2 2 0

⎞

⎠ (5.6.15)

is the orthogonal matrix that maps points in View (a) to their corresponding
images in View (d). For example, focus on the vertex labeled v in View (a), and
let va, vb, vc, and vd denote its respective coordinates in Views (a), (b), (c),
and (d). If va = ( 1 1 0 )T , then vb = Pxva = ( 1 0 1 )T ,

vc = Pyvb = PyPxva=

⎛

⎝

√
2

0
0

⎞

⎠, and vd = Pzvc = PzPyPxva=

⎛

⎝

√
2/2√
6/2
0

⎞

⎠.
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More generally, if the coordinates of each of the ten vertices in View (a) are
placed as columns in a vertex matrix,

Va =

⎛

⎜⎝

v1

↓
v2

↓
v10

↓
x1 x2 · · · x10

y1 y2 · · · y10

z1 z2 · · · z10

⎞

⎟⎠, then Vd = PzPyPxVa =

⎛

⎜⎝

v̂1

↓
v̂2

↓
v̂10

↓
x̂1 x̂2 · · · x̂10

ŷ1 ŷ2 · · · ŷ10

ẑ1 ẑ2 · · · ẑ10

⎞

⎟⎠

is the vertex matrix for the orientation shown in View (d). The polytope in
View (d) is drawn by identifying pairs of vertices (vi,vj) in Va that have an
edge between them, and by drawing an edge between the corresponding vertices
(v̂i, v̂j) in Vd.

Example 5.6.5
3-D Computer Graphics. Consider the problem of displaying and manipu-
lating views of a three-dimensional solid on a two-dimensional computer display
monitor. One simple technique is to use a wire-frame representation of the solid
consisting of a mesh of points (vertices) on the solid’s surface connected by
straight line segments (edges). Once these vertices and edges have been defined,
the resulting polytope can be oriented in any desired manner as described in
Example 5.6.4, so all that remains are the following problems.
Problem: How should the vertices and edges of a three-dimensional polytope
be plotted on a two-dimensional computer monitor?

Solution: Assume that the screen represents the yz-plane, and suppose the
x-axis is orthogonal to the screen so that it points toward the viewer’s eye as
shown in Figure 5.6.6.

z

y

x

Figure 5.6.6

A solid in the xyz-coordinate system appears to the viewer as the orthogonal
projection of the solid onto the yz-plane, and the projection of a polytope is
easy to draw. Just set the x-coordinate of each vertex to 0 (i.e., ignore the
x-coordinates), plot the (y, z)-coordinates on the yz-plane (the screen), and
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draw edges between appropriate vertices. For example, suppose that the vertices
of the polytope in Figure 5.6.5 are numbered as indicated below in Figure 5.6.7,

x
y

z

2 3

4

5
6 10

7

8

9

1

Figure 5.6.7

and suppose that the associated vertex matrix is

V =

⎛

⎝

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

x 0 1 1 0 0 1 1 1 .8 0
y 0 0 1 1 0 0 .8 1 1 1
z 0 0 0 0 1 1 1 .8 1 1

⎞

⎠.

There are 15 edges, and they can be recorded in an edge matrix

E =
( e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15

1 2 3 4 1 2 3 4 5 6 7 7 8 9 10
2 3 4 1 5 6 8 10 6 7 8 9 9 10 5

)

in which the kth column represents an edge between the indicated pair of ver-
tices. To display the image of the polytope in Figure 5.6.7 on a monitor, (i) drop
the first row from V, (ii) plot the remaining yz-coordinates on the screen, (iii)
draw edges between appropriate vertices as dictated by the information in the
edge matrix E. To display the image of the polytope after it has been rotated
counterclockwise around the x-, y-, and z-axes by 90◦, 45◦, and 60◦, re-
spectively, use the orthogonal matrix P = PzPyPx determined in (5.6.15) and
compute the product

PV =

⎛

⎝
0 .354 .707 .354 .866 1.22 1.5 1.4 1.5 1.22
0 .612 1.22 .612 −.5 .112 .602 .825 .602 .112
0 −.707 0 .707 0 −.707 −.141 0 .141 .707

⎞

⎠ .

Now proceed as before—(i) ignore the first row of PV, (ii) plot the points in
the second and third row of PV as yz-coordinates on the monitor, (iii) draw
edges between appropriate vertices as indicated by the edge matrix E.
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Problem: In addition to rotation, how can a polytope (or its image on a com-
puter monitor) be translated?

Solution: Translation of a polytope to a different point in space is accom-
plished by adding a constant to each of its coordinates. For example, to trans-
late the polytope shown in Figure 5.6.7 to the location where vertex 1 is at
pT = (x0, y0, z0) instead of at the origin, just add p to every point. In partic-
ular, if e is the column of 1’s, the translated vertex matrix is

Vtrans = Vorig +

⎛

⎝
x0 x0 · · · x0

y0 y0 · · · y0

z0 z0 · · · z0

⎞

⎠ = Vorig + peT (a rank-1 update).

Of course, the edge matrix is not affected by translation.

Problem: How can a polytope (or its image on a computer monitor) be scaled?

Solution: Simply multiply every coordinate by the desired scaling factor. For
example, to scale an image by a factor α, form the scaled vertex matrix

Vscaled = αVorig,

and then connect the scaled vertices with appropriate edges as dictated by the
edge matrix E.

Problem: How can the faces of a polytope that are hidden from the viewer’s
perspective be detected so that they can be omitted from the drawing on the
screen?

Solution: A complete discussion of this tricky problem would carry us too far
astray, but one clever solution relying on the cross product of vectors in ℜ3 is
presented in Exercise 5.6.21 for the case of convex polytopes.

Rotations in higher dimensions are straightforward generalizations of rota-
tions in ℜ3. Recall from p. 328 that rotation around any particular axis in ℜ3

amounts to rotation in the complementary plane, and the associated 3 × 3 ro-
tator is constructed by embedding a 2 × 2 rotator in the appropriate position
in a 3 × 3 identity matrix. For example, rotation around the y-axis is rotation
in the xz-plane, and the corresponding rotator is produced by embedding

(
cos θ sin θ

−sin θ cos θ

)

in the “ xz-position” of I3×3 to form

Py =

⎛

⎝
cos θ 0 sin θ
0 1 0

−sin θ 0 cos θ

⎞

⎠ .

These observations directly extend to higher dimensions.
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Plane Rotations
Orthogonal matrices of the form

col i
↓

col j
↓

Pij =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

c s
1

. . .
−s c

1
. . .

1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

←− row i

←− row j

in which c2 +s2 = 1 are called plane rotation matrices because they
perform a rotation in the (i, j)-plane of ℜn. The entries c and s are
meant to suggest cosine and sine, respectively, but designating a rotation
angle θ as is done in ℜ2 and ℜ3 is not useful in higher dimensions.

Plane rotations matrices Pij are also called Givens
48

rotations. Applying
Pij to 0 ̸= x ∈ ℜn rotates the (i, j)-coordinates of x in the sense that

Pijx =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...

cxi + sxj

...
−sxi + cxj

...
xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

←− i

←− j
.

If xi and xj are not both zero, and if we set

c =
xi√

x2
i + x2

j

and s =
xj√

x2
i + x2

j

, (5.6.16)

48
J. Wallace Givens, Jr. (1910–1993) pioneered the use of plane rotations in the early days
of automatic matrix computations. Givens graduated from Lynchburg College in 1928, and
he completed his Ph.D. at Princeton University in 1936. After spending three years at the
Institute for Advanced Study in Princeton as an assistant of O. Veblen, Givens accepted an
appointment at Cornell University but later moved to Northwestern University. In addition to
his academic career, Givens was the Director of the Applied Mathematics Division at Argonne
National Laboratory and, like his counterpart A. S. Householder (p. 324) at Oak Ridge National
Laboratory, Givens served as an early president of SIAM.
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then

Pijx =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
...√

x2
i + x2

j

...
0
...

xn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

←− i

←− j

.

This means that we can selectively annihilate any component—the jth in this
case—by a rotation in the (i, j)-plane without affecting any entry except xi and
xj . Consequently, plane rotations can be applied to annihilate all components
below any particular “pivot.” For example, to annihilate all entries below the
first position in x, apply a sequence of plane rotations as follows:

P12x=

⎛

⎜⎜⎜⎜⎝

√
x2
1+x2

2
0
x3
x4
...

xn

⎞

⎟⎟⎟⎟⎠
, P13P12x=

⎛

⎜⎜⎜⎜⎝

√
x2
1+x2

2+x2
3

0
0
x4
...

xn

⎞

⎟⎟⎟⎟⎠
, . . . , P1n· · ·P13P12x=

⎛

⎜⎜⎜⎜⎝

∥x∥
0
0
0
...
0

⎞

⎟⎟⎟⎟⎠
.

The product of plane rotations is generally not another plane rotation, but
such a product is always an orthogonal matrix, and hence it is an isometry. If
we are willing to interpret “rotation in ℜn ” as a sequence of plane rotations,
then we can say that it is always possible to “rotate” each nonzero vector onto
the first coordinate axis. Recall from (5.6.11) that we can also do this with a
reflection. More generally, the following statement is true.

Rotations in ℜn

Every nonzero vector x ∈ ℜn can be rotated to the ith coordinate
axis by a sequence of n−1 plane rotations. In other words, there is an
orthogonal matrix P such that

Px = ∥x∥ ei, (5.6.17)

where P has the form

P = Pin · · ·Pi,i+1Pi,i−1 · · ·Pi1.
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Example 5.6.6
Problem: If x ∈ ℜn is a vector such that ∥x∥ = 1, explain how to use plane
rotations to construct an orthonormal basis for ℜn that contains x.

Solution: This is almost the same problem as that posed in Example 5.6.3, and,
as explained there, the goal is to construct an orthogonal matrix Q such that
Q∗1 = x. But this time we need to use plane rotations rather than an elementary
reflector. Equation (5.6.17) asserts that we can build an orthogonal matrix from
a sequence of plane rotations P = P1n · · ·P13P12 such that Px = e1. Thus
x = PT e1 = PT

∗1, and hence the columns of Q = PT serve the purpose. For
example, to extend

x =
1
3

⎛

⎜⎝

−1
2
0

−2

⎞

⎟⎠

to an orthonormal basis for ℜ4, sequentially annihilate the second and fourth
components of x by using (5.6.16) to construct the following plane rotations:

P12x =

⎛

⎜⎝

−1/
√

5 2/
√

5 0 0
−2/

√
5 −1/

√
5 0 0

0 0 1 0
0 0 0 1

⎞

⎟⎠
1
3

⎛

⎜⎝

−1
2
0

−2

⎞

⎟⎠ =
1
3

⎛

⎜⎝

√
5
0
0

−2

⎞

⎟⎠ ,

P14

(
P12x

)
=

⎛

⎜⎝

√
5/3 0 0 −2/3
0 1 0 0
0 0 1 0

2/3 0 0
√

5/3

⎞

⎟⎠
1
3

⎛

⎜⎝

√
5
0
0

−2

⎞

⎟⎠ =

⎛

⎜⎝

1
0
0
0

⎞

⎟⎠ .

Therefore, the columns of

Q = (P14P12)
T = PT

12P
T
14 =

⎛

⎜⎝

−1/3 −2/
√

5 0 −2/3
√

5
2/3 −1/

√
5 0 4/3

√
5

0 0 1 0
−2/3 0 0

√
5/3

⎞

⎟⎠

are an orthonormal set containing the specified vector x.

Exercises for section 5.6

5.6.1. Determine which of the following matrices are isometries.

(a)

⎛

⎝
1/

√
2 −1/

√
2 0

1/
√

6 1/
√

6 −2/
√

6
1/

√
3 1/

√
3 1/

√
3

⎞

⎠ . (b)

⎛

⎝
1 0 1
1 0 −1
0 1 0

⎞

⎠ .

(c)

⎛

⎜⎝

0 0 1 0
1 0 0 0
0 0 0 1
0 1 0 0

⎞

⎟⎠ . (d)

⎛

⎜⎜⎝

eiθ1 0 · · · 0
0 eiθ2 · · · 0
...

...
. . .

...
0 0 · · · eiθn

⎞

⎟⎟⎠.
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5.6.2. Is

⎛

⎜⎜⎝

1 + i√
3

1 + i√
6

i√
3

−2 i√
6

⎞

⎟⎟⎠ a unitary matrix?

5.6.3. (a) How many 3 × 3 matrices are both diagonal and orthogonal?
(b) How many n × n matrices are both diagonal and orthogonal?
(c) How many n × n matrices are both diagonal and unitary?

5.6.4. (a) Under what conditions on the real numbers α and β will

P =
(

α + β β −α
α −β β + α

)

be an orthogonal matrix?
(b) Under what conditions on the real numbers α and β will

U =

⎛

⎜⎝

0 α 0 iβ
α 0 iβ 0
0 iβ 0 α
iβ 0 α 0

⎞

⎟⎠

be a unitary matrix?

5.6.5. Let U and V be two n × n unitary (orthogonal) matrices.
(a) Explain why the product UV must be unitary (orthogonal).
(b) Explain why the sum U+V need not be unitary (orthogonal).
(c) Explain why

(
Un×n 0

0 Vm×m

)
must be unitary (orthogonal).

5.6.6. Cayley Transformation. Prove, as Cayley did in 1846, that if A is
skew hermitian (or real skew symmetric), then

U = (I −A)(I + A)−1 = (I + A)−1(I −A)

is unitary (orthogonal) by first showing that (I+A)−1 exists for skew-
hermitian matrices, and (I −A)(I + A)−1 = (I + A)−1(I −A) (recall
Exercise 3.7.6). Note: There is a more direct approach, but it requires
the diagonalization theorem for normal matrices—see Exercise 7.5.5.

5.6.7. Suppose that R and S are elementary reflectors.

(a) Is
(

I 0
0 R

)
an elementary reflector?

(b) Is
(

R 0
0 S

)
an elementary reflector?
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5.6.8. (a) Explain why the standard inner product is invariant under a uni-
tary transformation. That is, if U is any unitary matrix, and if
u = Ux and v = Uy, then

u∗v = x∗y.

(b) Given any two vectors x,y ∈ ℜn, explain why the angle between
them is invariant under an orthogonal transformation. That is, if
u = Px and v = Py, where P is an orthogonal matrix, then

cos θu,v = cos θx,y.

5.6.9. Let Um×r be a matrix with orthonormal columns, and let Vk×n be a
matrix with orthonormal rows. For an arbitrary A ∈ Cr×k, solve the
following problems using the matrix 2-norm (p. 281) and the Frobenius
matrix norm (p. 279).

(a) Determine the values of ∥U∥2 , ∥V∥2 , ∥U∥F , and ∥V∥F .

(b) Show that ∥UAV∥2 = ∥A∥2 . (Hint: Start with ∥UA∥2 . )
(c) Show that ∥UAV∥F = ∥A∥F .

Note: In particular, these properties are valid when U and V are
unitary matrices. Because of parts (b) and (c), the 2-norm and the F -
norm are said to be unitarily invariant norms.

5.6.10. Let u =

⎛

⎝
−2

1
3

−1

⎞

⎠ and v =

⎛

⎝
1
4
0

−1

⎞

⎠.

(a) Determine the orthogonal projection of u onto span {v} .
(b) Determine the orthogonal projection of v onto span {u} .
(c) Determine the orthogonal projection of u onto v⊥ .
(d) Determine the orthogonal projection of v onto u⊥ .

5.6.11. Consider elementary orthogonal projectors Q = I −uu∗.
(a) Prove that Q is singular.
(b) Now prove that if Q is n × n, then rank (Q) = n − 1.

Hint: Recall Exercise 4.4.10.

5.6.12. For vectors u,x ∈ Cn such that ∥u∥ = 1, let p be the orthogonal
projection of x onto span {u} . Explain why ∥p∥ ≤ ∥x∥ with equality
holding if and only if x is a scalar multiple of u.
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5.6.13. Let x = (1/3)
(

1
−2
−2

)
.

(a) Determine an elementary reflector R such that Rx lies on the
x-axis.

(b) Verify by direct computation that your reflector R is symmet-
ric, orthogonal, and involutory.

(c) Extend x to an orthonormal basis for ℜ3 by using an elemen-
tary reflector.

5.6.14. Let R = I − 2uu∗, where ∥un×1∥ = 1. If x is a fixed point for R in
the sense that Rx = x, and if n > 1, prove that x must be orthogonal
to u, and then sketch a picture of this situation in ℜ3.

5.6.15. Let x, y ∈ ℜn×1 be vectors such that ∥x∥ = ∥y∥ but x ̸= y. Explain
how to construct an elementary reflector R such that Rx = y.
Hint: The vector u that defines R can be determined visually in ℜ3

by considering Figure 5.6.2.

5.6.16. Let xn×1 be a vector such that ∥x∥ = 1, and partition x as

x =
(

x1

x̃

)
, where x̃ is n − 1 × 1.

(a) If the entries of x are real, and if x1 ̸= 1, show that

P =
(

x1 x̃T

x̃ I −αx̃x̃T

)
, where α =

1
1 −x1

is an orthogonal matrix.
(b) Suppose that the entries of x are complex. If |x1| ̸= 1, and if

µ is the number defined in (5.6.10), show that the matrix

U =
(

x1 µ2x̃∗

x̃ µ(I −αx̃x̃∗)

)
, where α =

1
1 − |x1|

is unitary. Note: These results provide an easy way to extend
a given vector to an orthonormal basis for the entire space ℜn

or Cn.
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5.6.17. Perform the following sequence of rotations in ℜ3 beginning with

v0 =

⎛

⎝
1
1

−1

⎞

⎠ .

1. Rotate v0 counterclockwise 45◦ around the x-axis to produce v1.
2. Rotate v1 clockwise 90◦ around the y-axis to produce v2.
3. Rotate v2 counterclockwise 30◦ around the z-axis to produce v3.

Determine the coordinates of v3 as well as an orthogonal matrix Q
such that Qv0 = v3.

5.6.18. Does it matter in what order rotations in ℜ3 are performed? For ex-
ample, suppose that a vector v ∈ ℜ3 is first rotated counterclockwise
around the x-axis through an angle θ, and then that vector is rotated
counterclockwise around the y-axis through an angle φ. Is the result
the same as first rotating v counterclockwise around the y-axis through
an angle φ followed by a rotation counterclockwise around the x-axis
through an angle θ?

5.6.19. For each nonzero vector u ∈ Cn, prove that dim u⊥ = n − 1.

5.6.20. A matrix satisfying A2 = I is said to be an involution or an involu-
tory matrix , and a matrix P satisfying P2 = P is called a projector
or is said to be an idempotent matrix—properties of such matrices
are developed on p. 386. Show that there is a one-to-one correspondence
between the set of involutions and the set of projectors in Cn×n. Hint:
Consider the relationship between the projectors in (5.6.6) and the re-
flectors (which are involutions) in (5.6.7) on p. 324.

5.6.21. When using a computer to generate and display a three-dimensional
convex polytope such as the one in Example 5.6.4, it is desirable to not
draw those faces that should be hidden from the perspective of a viewer
positioned as shown in Figure 5.6.6. The operation of cross product in
ℜ3 (usually introduced in elementary calculus courses) can be used to
decide which faces are visible and which are not. Recall that if

u =

⎛

⎝
u1

u2

u3

⎞

⎠ and v =

⎛

⎝
v1

v2

v3

⎞

⎠ , then u × v =

⎛

⎝
u2v3 −u3v2

u3v1 −u1v3

u1v2 −u2v1

⎞

⎠ ,
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and u × v is a vector orthogonal to both u and v. The direction of
u × v is determined from the so-called right-hand rule as illustrated in
Figure 5.6.8.

Figure 5.6.8

Assume the origin is interior to the polytope, and consider a particular
face and three vertices p0, p1, and p2 on the face that are positioned
as shown in Figure 5.6.9. The vector n = (p1 − p0) × (p2 − p1) is
orthogonal to the face, and it points in the outward direction.

Figure 5.6.9

Explain why the outside of the face is visible from the perspective indi-
cated in Figure 5.6.6 if and only if the first component of the outward
normal vector n is positive. In other words, the face is drawn if and
only if n1 > 0.
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Thus the modified Gram–Schmidt algorithm produces

u1 =

⎛

⎝
1
0

10−3

⎞

⎠ , u2 =

⎛

⎝
0
0
−1

⎞

⎠ , u3 =

⎛

⎝
0
1
0

⎞

⎠ ,

which is as close to being an orthonormal set as one could reasonably hope to
obtain by using 3-digit arithmetic.

5.5.10. Yes. In both cases rij is the (i, j)-entry in the upper-triangular matrix R in the
QR factorization.

5.5.11. p0(x) = 1/
√

2, p1(x) =
√

3/2 x, p2(x) =
√

5/8 (3x2 − 1)

Solutions for exercises in section 5. 6

5.6.1. (a), (c), and (d).

5.6.2. Yes, because U∗U =
(

1 0
0 1

)
.

5.6.3. (a) Eight: D =

⎛

⎝
±1 0 0
0 ±1 0
0 0 ±1

⎞

⎠ (b) 2n : D =

⎛

⎜⎜⎝

±1 0 · · · 0
0 ±1 · · · 0
...

...
. . .

...
0 0 · · · ±1

⎞

⎟⎟⎠

(c) There are infinitely many because each diagonal entry can be any point on the
unit circle in the complex plane—these matrices have the form given in part (d)
of Exercise 5.6.1.

5.6.4. (a) When α2 + β2 = 1/2. (b) When α2 + β2 = 1.
5.6.5. (a) (UV)∗(UV) = V∗U∗UV = V∗V = I.

(b) Consider I + (−I) = 0.

(c) (
U 0
0 V

)∗(U 0
0 V

)
=
(

U∗ 0
0 V∗

)(
U 0
0 V

)

=
(

U∗U 0
0 V∗V

)

=
(

I 0
0 I

)
.

5.6.6. Recall from (3.7.8) or (4.2.10) that (I+A)−1 exists if and only if N (I + A) = 0,
and write x ∈ N (I + A) =⇒ x = −Ax =⇒ x∗x = −x∗Ax. But
taking the conjugate transpose of both sides yields x∗x = −x∗A∗x = x∗Ax,
so x∗x = 0, and thus x = 0. Replacing A by −A in Exercise 3.7.6 gives
A(I + A)−1 = (I + A)−1A, so

(I−A)(I + A)−1 = (I + A)−1 −A(I + A)−1

= (I + A)−1 − (I + A)−1A = (I + A)−1(I−A).
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These results together with the fact that A is skew hermitian produce

U∗U = (I + A)−1∗(I−A)∗(I−A)(I + A)−1

= (I + A)∗−1(I−A)∗(I−A)(I + A)−1

= (I−A)−1(I + A)(I−A)(I + A)−1 = I.

5.6.7. (a) Yes—because if R = I− 2uu∗, where ∥u∥ = 1, then
(

I 0
0 R

)
= I− 2

(
0
u

)
(0 u∗) and

∥∥∥∥

(
0
u

)∥∥∥∥ = 1.

(b) No—Suppose R = I − 2uu∗ and S = I − 2vv∗, where ∥u∥ = 1 and
∥v∥ = 1 so that (

R 0
0 S

)
= I− 2

(
uu∗ 0
0 vv∗

)
.

If we could find a vector w such that ∥w∥ = 1 and
(

R 0
0 S

)
= I− 2ww∗, then ww∗=

(
uu∗ 0
0 vv∗

)
.

But this is impossible because (recall Example 3.9.3)

rank (ww∗) = 1 and rank

(
uu∗ 0
0 vv∗

)
= 2.

5.6.8. (a) u∗v = (Ux)∗Uy = x∗U∗Uy = x∗y
(b) The fact that P is an isometry means ∥u∥ = ∥x∥ and ∥v∥ = ∥y∥ . Use
this together with part (a) and the definition of cosine given in (5.4.1) to obtain

cos θu,v =
uT v
∥u∥ ∥v∥ =

xT y
∥x∥ ∥y∥ = cos θx,y.

5.6.9. (a) Since Um×r has orthonormal columns, we have U∗U = Ir so that

∥U∥22 = max
∥x∥2=1

x∗U∗Ux = max
∥x∥2=1

x∗x = 1.

This together with ∥A∥2 = ∥A∗∥2—recall (5.2.10)—implies ∥V∥2 = 1. For the
Frobenius norm we have

∥U∥F = [trace (U∗U)]1/2 = [trace (I)]1/2 =
√

r.

trace (AB) = trace (BA) (Example 3.6.5) and VV∗= Ik =⇒ ∥V∥F =
√

k.
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(b) First show that ∥UA∥2 = ∥A∥2 by writing

∥UA∥22 = max
∥x∥2=1

∥UAx∥22 = max
∥x∥2=1

x∗A∗U∗UAx = max
∥x∥2=1

x∗A∗Ax

= max
∥x∥2=1

∥Ax∥22 = ∥A∥22 .

Now use this together with ∥A∥2 = ∥A∗∥2 to observe that

∥AV∥2 = ∥V∗A∗∥2 = ∥A∗∥2 = ∥A∥2 .

Therefore, ∥UAV∥2 = ∥U(AV)∥2 = ∥AV∥2 = ∥A∥2 .

(c) Use trace (AB) = trace (BA) with U∗U = Ir and VV∗= Ik to write

∥UAV∥2F = trace
(
(UAV)∗UAV

)
= trace (V∗A∗U∗UAV)

= trace (V∗A∗AV) = trace (A∗AVV∗)

= trace (A∗A) = ∥A∥2F .

5.6.10. Use (5.6.6) to compute the following quantities.

(a)
vvT

vT v
u =

(
vT u
vT v

)
v =

1
6
v =

1
6

⎛

⎜⎝

1
4
0
−1

⎞

⎟⎠

(b)
uuT

uT u
v =

(
uT v
uT u

)
u =

1
5
u =

1
5

⎛

⎜⎝

−2
1
3
−1

⎞

⎟⎠

(c)
(
I− vvT

vT v

)
u = u−

(
vT u
vT v

)
v = u− 1

6
v =

1
6

⎛

⎜⎝

−13
2

18
−5

⎞

⎟⎠

(d)
(
I− uuT

uT u

)
v = v −

(
uT v
uT u

)
u = v − 1

5
u =

1
5

⎛

⎜⎝

7
19
−3
−4

⎞

⎟⎠

5.6.11. (a) N (Q) ̸= {0} because Qu = 0 and ∥u∥ = 1 =⇒ u ̸= 0, so Q must
be singular by (4.2.10).
(b) The result of Exercise 4.4.10 insures that n−1 ≤ rank (Q), and the result
of part (a) says rank (Q) ≤ n− 1, and therefore rank (Q) = n− 1.

5.6.12. Use (5.6.5) in conjunction with the CBS inequality given in (5.1.3) to write

∥p∥ = |u∗x| ≤ ∥u∥ ∥x∥ = ∥x∥ .
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The fact that equality holds if and only if x is a scalar multiple of u follows
from the result of Exercise 5.1.9.

5.6.13. (a) Set u = x− ∥x∥ e1 = −2/3

⎛

⎝
1
1
1

⎞

⎠ , and compute

R = I− 2uuT

uT u
=

1
3

⎛

⎝
1 −2 −2
−2 1 −2
−2 −2 1

⎞

⎠ .

(You could also use u = x + ∥x∥ e1. )
(b) Verify that R = RT , RT R = I, and R2 = I.
(c) The columns of the reflector R computed in part (a) do the job.

5.6.14. Rx = x =⇒ 2uu∗x = 0 =⇒ u∗x = 0 because u ̸= 0.
5.6.15. If Rx = y in Figure 5.6.2, then the line segment between x − y is parallel to

the line determined by u, so x − y itself must be a scalar multiple of u. If
x− y = αu, then

u =
x− y

α
=

x− y
∥x− y∥ .

It is straightforward to verify that this choice of u produces the desired reflector.
5.6.16. You can verify by direct multiplication that PT P = I and U∗U = I, but you

can also recognize that P and U are elementary reflectors that come from
Example 5.6.3 in the sense that

P = I− 2
uuT

uT u
, where u = x− e1 =

(
x1 − 1

x̃

)

and

U = µ

(
I− 2

uu∗

u∗u

)
, where u = x− µe1 =

(
x1 − µ

x̃

)
.

5.6.17. The final result is

v3 =

⎛

⎝
−
√

2/2√
6/2
1

⎞

⎠

and

Q = Pz(π/6)Py(−π/2)Px(π/4) =
1
4

⎛

⎝
0 −

√
6−
√

2 −
√

6 +
√

2
0

√
6−
√

2 −
√

6−
√

2
4 0 0

⎞

⎠ .

5.6.18. It matters because the rotation matrices given on p. 328 generally do not com-
mute with each other (this is easily verified by direct multiplication). For exam-
ple, this means that it is generally the case that

Py(φ)Px(θ)v ̸= Px(θ)Py(φ)v.



68 Solutions

5.6.19. As pointed out in Example 5.6.2, u⊥ = (u/ ∥u∥)⊥ , so we can assume without
any loss of generality that u has unit norm. We also know that any vector of
unit norm can be extended to an orthonormal basis for Cn—Examples 5.6.3 and
5.6.6 provide two possible ways to accomplish this. Let {u, v1, v2, . . . ,vn−1}
be such an orthonormal basis for Cn.

Claim: span {v1,v2, . . . ,vn−1} = u⊥.

Proof. x ∈ span {v1,v2, . . . ,vn−1} =⇒ x =
∑

i αivi =⇒ u∗x =∑
i αiu∗vi = 0 =⇒ x ∈ u⊥, and thus span {v1,v2, . . . ,vn−1} ⊆ u⊥.

To establish the reverse inclusion, write x = α0u+
∑

i αivi, and then note
that x ⊥ u =⇒ 0 = u∗x = α0 =⇒ x ∈ span {v1,v2, . . . ,vn−1} , and
hence =⇒ u⊥ ⊆ span {v1,v2, . . . ,vn−1} .

Consequently, {v1,v2, . . . ,vn−1} is a basis for u⊥ because it is a spanning set
that is linearly independent—recall (4.3.14)—and thus dim u⊥ = n− 1.

5.6.20. The relationship between the matrices in (5.6.6) and (5.6.7) on p. 324 suggests
that if P is a projector, then A = I − 2P is an involution—and indeed this
is true because A2 = (I − 2P)2 = I − 4P + 4P2 = I. Similarly, if A is an
involution, then P = (I −A)/2 is easily verified to be a projector. Thus each
projector uniquely defines an involution, and vice versa.

5.6.21. The outside of the face is visible from the perspective indicated in Figure 5.6.6
if and only if the angle θ between n and the positive x-axis is between −90◦
and +90◦. This is equivalent to saying that the cosine between n and e1 is
positive, so the desired conclusion follows from the fact that

cos θ > 0⇐⇒ nT e1

∥n∥ ∥e1∥
> 0⇐⇒ nT e1 > 0⇐⇒ n1 > 0.

Solutions for exercises in section 5. 7

5.7.1. (a) Householder reduction produces

R2R1A =

⎛

⎝
1 0 0
0 −3/5 4/5
0 4/5 3/5

⎞

⎠

⎛

⎝
1/3 −2/3 2/3
−2/3 1/3 2/3

2/3 2/3 1/3

⎞

⎠

⎛

⎝
1 19 −34
−2 −5 20

2 8 37

⎞

⎠

=

⎛

⎝
3 15 0
0 15 −30
0 0 45

⎞

⎠ = R,

so

Q = (R2R1)
T =

⎛

⎝
1/3 14/15 −2/15
−2/3 1/3 2/3
2/3 −2/15 11/15

⎞

⎠ .


