
CHAPTER 6

Determinants

6.1 DETERMINANTS

At the beginning of this text, reference was made to the ancient Chinese counting
board on which colored bamboo rods were manipulated according to prescribed
“rules of thumb” in order to solve a system of linear equations. The Chinese
counting board is believed to date back to at least 200 B.C., and it was used
more or less in the same way for a millennium. The counting board and the “rules
of thumb” eventually found their way to Japan where Seki Kowa (1642–1708),
a great Japanese mathematician, synthesized the ancient Chinese ideas of array
manipulation. Kowa formulated the concept of what we now call the determinant
to facilitate solving linear systems—his definition is thought to have been made
some time before 1683.

About the same time—somewhere between 1678 and 1693—Gottfried W.
Leibniz (1646–1716), a German mathematician, was independently developing
his own concept of the determinant together with applications of array manipu-
lation to solve systems of linear equations. It appears that Leibniz’s early work
dealt with only three equations in three unknowns, whereas Seki Kowa gave a
general treatment for n equations in n unknowns. It seems that Kowa and
Leibniz both developed what later became known as Cramer’s rule (p. 476), but
not in the same form or notation. These men had something else in common—
their ideas concerning the solution of linear systems were never adopted by the
mathematical community of their time, and their discoveries quickly faded into
oblivion.

Eventually the determinant was rediscovered, and much was written on the
subject between 1750 and 1900. During this era, determinants became the ma-
jor tool used to analyze and solve linear systems, while the theory of matrices
remained relatively undeveloped. But mathematics, like a river, is everchanging
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in its course, and major branches can dry up to become minor tributaries while
small trickling brooks can develop into raging torrents. This is precisely what
occurred with determinants and matrices. The study and use of determinants
eventually gave way to Cayley’s matrix algebra, and today matrix and linear
algebra are in the main stream of applied mathematics, while the role of deter-
minants has been relegated to a minor backwater position. Nevertheless, it is still
important to understand what a determinant is and to learn a few of its funda-
mental properties. Our goal is not to study determinants for their own sake, but
rather to explore those properties that are useful in the further development of
matrix theory and its applications. Accordingly, many secondary properties are
omitted or confined to the exercises, and the details in proofs will be kept to a
minimum.

Over the years there have evolved various “slick” ways to define the determi-
nant, but each of these “slick” approaches seems to require at least one “sticky”
theorem in order to make the theory sound. We are going to opt for expedience
over elegance and proceed with the classical treatment.

A permutation p = (p1, p2, . . . , pn) of the numbers (1, 2, . . . , n) is simply
any rearrangement. For example, the set

{(1, 2, 3) (1, 3, 2) (2, 1, 3) (2, 3, 1) (3, 1, 2) (3, 2, 1)}

contains the six distinct permutations of (1, 2, 3). In general, the sequence
(1, 2, . . . , n) has n! = n(n − 1)(n − 2) · · · 1 different permutations. Given a per-
mutation, consider the problem of restoring it to natural order by a sequence
of pairwise interchanges. For example, (1, 4, 3, 2) can be restored to natural or-
der with a single interchange of 2 and 4 or, as indicated in Figure 6.1.1, three
adjacent interchanges can be used.

( 1,  2,  3,  4 )

( 1,  4,  3  2)

( 1,  2,  3,  4 )

( 1,  4,  3,  2 )

( 1,  4,  2,  3 )

( 1,  2,  4,  3 )

Figure 6.1.1

The important thing here is that both 1 and 3 are odd. Try to restore
(1, 4, 3, 2) to natural order by using an even number of interchanges, and you
will discover that it is impossible. This is due to the following general rule that is
stated without proof. The parity of a permutation is unique—i.e., if a permuta-
tion p can be restored to natural order by an even (odd) number of interchanges,
then every other sequence of interchanges that restores p to natural order must
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also be even (odd). Accordingly, the sign of a permutation p is defined to be
the number

σ(p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

+1 if p can be restored to natural order by an
even number of interchanges,

−1 if p can be restored to natural order by an
odd number of interchanges.

For example, if p = (1, 4, 3, 2), then σ(p) = −1, and if p = (4, 3, 2, 1), then
σ(p) = +1. The sign of the natural order p = (1, 2, 3, 4) is naturally σ(p) = +1.
The general definition of the determinant can now be given.

Definition of Determinant
For an n × n matrix A = [aij ], the determinant of A is defined to
be the scalar

det (A) =
∑

p

σ(p)a1p1a2p2 · · · anpn , (6.1.1)

where the sum is taken over the n! permutations p = (p1, p2, . . . , pn)
of (1, 2, . . . , n). Observe that each term a1p1a2p2 · · · anpn in (6.1.1) con-
tains exactly one entry from each row and each column of A. The de-
terminant of A can be denoted by det (A) or |A|, whichever is more
convenient.
Note: The determinant of a nonsquare matrix is not defined.

For example, when A is 2 × 2 there are 2! = 2 permutations of (1,2),
namely, {(1, 2) (2, 1)}, so det (A) contains the two terms

σ(1, 2)a11a22 and σ(2, 1)a12a21.

Since σ(1, 2) = +1 and σ(2, 1) = −1, we obtain the familiar formula
∣

∣

∣

∣

a11 a12

a21 a22

∣

∣

∣

∣

= a11a22 − a12a21. (6.1.2)

Example 6.1.1

Problem: Use the definition to compute det (A), where A =
(

1 2 3
4 5 6
7 8 9

)

.

Solution: The 3! = 6 permutations of (1, 2, 3) together with the terms in the
expansion of det (A) are shown in Table 6.1.1.
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Table 6.1.1

p = (p1, p2, p3) σ(p) a1p1a2p2a3p3

(1, 2, 3) + 1 × 5 × 9 = 45

(1, 3, 2) − 1 × 6 × 8 = 48

(2, 1, 3) − 2 × 4 × 9 = 72

(2, 3, 1) + 2 × 6 × 7 = 84

(3, 1, 2) + 3 × 4 × 8 = 96

(3, 2, 1) − 3 × 5 × 7 = 105

Therefore,

det (A) =
∑

p

σ(p)a1p1a2p2a3p3 = 45 − 48 − 72 + 84 + 96 − 105 = 0.

Perhaps you have seen rules for computing 3 × 3 determinants that involve
running up, down, and around various diagonal lines. These rules do not easily
generalize to matrices of order greater than three, and in case you have forgotten
(or never knew) them, do not worry about it. Remember the 2 × 2 rule given
in (6.1.2) as well as the following statement concerning triangular matrices and
let it go at that.

Triangular Determinants
The determinant of a triangular matrix is the product of its diagonal
entries. In other words,

∣

∣

∣

∣

∣

∣

∣

∣

t11 t12 · · · t1n

0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

∣

∣

∣

∣

∣

∣

∣

∣

= t11t22 · · · tnn. (6.1.3)

Proof. Recall from the definition (6.1.1) that each term t1p1t2p2 · · · tnpn con-
tains exactly one entry from each row and each column. This means that there
is only one term in the expansion of the determinant that does not contain an
entry below the diagonal, and this term is t11t22 · · · tnn.
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Transposition Doesn’t Alter Determinants
• det

(

AT
)

= det (A) for all n × n matrices. (6.1.4)

Proof. As p = (p1, p2, . . . , pn) varies over all permutations of (1, 2, . . . , n), the
set of all products {σ(p)a1p1a2p2 · · · anpn} is the same as the set of all products
{σ(p)ap11ap22 · · · apnn} . Explicitly construct both of these sets for n = 3 to
convince yourself.

Equation (6.1.4) insures that it’s not necessary to distinguish between rows
and columns when discussing properties of determinants, so theorems concern-
ing determinants that involve row manipulations will remain true when the word
“row” is replaced by “column.” For example, it’s essential to know how elemen-
tary row and column operations alter the determinant of a matrix, but, by virtue
of (6.1.4), it suffices to limit the discussion to elementary row operations.

Effects of Row Operations
Let B be the matrix obtained from An×n by one of the three elemen-
tary row operations:

Type I: Interchange rows i and j.

Type II: Multiply row i by α ̸= 0.

Type III: Add α times row i to row j.

The value of det (B) is as follows:
• det (B) = −det (A) for Type I operations. (6.1.5)
• det (B) = α det (A) for Type II operations. (6.1.6)
• det (B) = det (A) for Type III operations. (6.1.7)

Proof of (6.1.5). If B agrees with A except that Bi∗ = Aj∗ and Bj∗ = Ai∗,
then for each permutation p = (p1, p2, . . . , pn) of (1, 2, . . . , n),

b1p1 · · · bipi · · · bjpj · · · bnpn = a1p1 · · · ajpi · · · aipj · · · anpn

= a1p1 · · · aipj · · · ajpi · · · anpn .

Furthermore, σ(p1, . . . , pi, . . . , pj , . . . , pn) = −σ(p1, . . . , pj , . . . , pi, . . . , pn) be-
cause the two permutations differ only by one interchange. Consequently, defini-
tion (6.1.1) of the determinant guarantees that det (B) = −det (A).
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Proof of (6.1.6). If B agrees with A except that Bi∗ = αAi∗, then for each
permutation p = (p1, p2, . . . , pn),

b1p1 · · · bipi · · · bnpn = a1p1 · · ·αaipi · · · anpn = α(a1p1 · · · aipi · · · anpn),

and therefore the expansion (6.1.1) yields det (B) = α det (A).

Proof of (6.1.7). If B agrees with A except that Bj∗ = Aj∗ + αAi∗, then
for each permutation p = (p1, p2, . . . , pn),

b1p1 · · · bipi · · · bjpj · · · bnpn = a1p1 · · · aipi · · · (ajpj + αaipj ) · · · anpn

= a1p1 · · · aipi · · · ajpj · · · anpn + α(a1p1 · · · aipi · · · aipj · · · anpn),

so that
det (B) =

∑

p

σ(p)a1p1 · · · aipi · · · ajpj · · · anpn

+α
∑

p

σ(p)a1p1 · · · aipi · · · aipj · · · anpn .
(6.1.8)

The first sum on the right-hand side of (6.1.8) is det (A), while the second sum is
the expansion of the determinant of a matrix Ã in which the ith and jth rows
are identical. For such a matrix, det(Ã) = 0 because (6.1.5) says that the sign
of the determinant is reversed whenever the ith and jth rows are interchanged,
so det(Ã) = −det(Ã). Consequently, the second sum on the right-hand side of
(6.1.8) is zero, and thus det (B) = det (A).

It is now possible to evaluate the determinant of an elementary matrix as-
sociated with any of the three types of elementary operations. Let E, F, and
G be elementary matrices of Types I, II, and III, respectively, and recall from
the discussion in §3.9 that each of these elementary matrices can be obtained by
performing the associated row (or column) operation to an identity matrix of ap-
propriate size. The result concerning triangular determinants (6.1.3) guarantees
that det (I) = 1 regardless of the size of I, so if E is obtained by interchanging
any two rows (or columns) in I, then (6.1.5) insures that

det (E) = −det (I) = −1. (6.1.9)

Similarly, if F is obtained by multiplying any row (or column) in I by α ̸= 0,
then (6.1.6) implies that

det (F) = α det (I) = α, (6.1.10)

and if G is the result of adding a multiple of one row (or column) in I to
another row (or column) in I, then (6.1.7) guarantees that

det (G) = det (I) = 1. (6.1.11)
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In particular, (6.1.9)–(6.1.11) guarantee that the determinants of elementary
matrices of Types I, II, and III are nonzero.

As discussed in §3.9, if P is an elementary matrix of Type I, II, or III,
and if A is any other matrix, then the product PA is the matrix obtained by
performing the elementary operation associated with P to the rows of A. This,
together with the observations (6.1.5)–(6.1.7) and (6.1.9)–(6.1.11), leads to the
conclusion that for every square matrix A,

det (EA) = −det (A) = det (E)det (A),
det (FA) = α det (A) = det (F)det (A),
det (GA) = det (A) = det (G)det (A).

In other words, det (PA) = det (P)det (A) whenever P is an elementary matrix
of Type I, II, or III. It’s easy to extend this observation to any number of these
elementary matrices, P1,P2, . . . ,Pk, by writing

det (P1P2 · · ·PkA) = det (P1)det (P2 · · ·PkA)
= det (P1)det (P2)det (P3 · · ·PkA)
...
= det (P1)det (P2) · · ·det (Pk)det (A).

(6.1.12)

This leads to a characterization of invertibility in terms of determinants.

Invertibility and Determinants
• An×n is nonsingular if and only if det (A) ̸= 0 (6.1.13)

or, equivalently,
• An×n is singular if and only if det (A) = 0. (6.1.14)

Proof. Let P1,P2, . . . ,Pk be a sequence of elementary matrices of Type I, II,
or III such that P1P2 · · ·PkA = EA, and apply (6.1.12) to conclude

det (P1)det (P2) · · ·det (Pk)det (A) = det (EA).

Since elementary matrices have nonzero determinants,

det (A) ̸= 0 ⇐⇒ det (EA) ̸= 0 ⇐⇒ there are no zero pivots
⇐⇒ every column in EA (and in A) is basic
⇐⇒ A is nonsingular.
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Example 6.1.2
Caution! Small Determinants /⇐⇒ Near Singularity. Because of (6.1.13)
and (6.1.14), it might be easy to get the idea that det (A) is somehow a measure
of how close A is to being singular, but this is not necessarily the case. Nearly
singular matrices need not have determinants of small magnitude. For example,
An =

(

n 0
0 1/n

)

is nearly singular when n is large, but det (An) = 1 for all
n. Furthermore, small determinants do not necessarily signal nearly singular
matrices. For example,

An =

⎛

⎜

⎜

⎝

.1 0 · · · 0
0 .1 · · · 0
...

...
. . .

...
0 0 · · · .1

⎞

⎟

⎟

⎠

n×n

is not close to any singular matrix—see (5.12.10) on p. 417—but det (An) =
(.1)n is extremely small for large n.

A minor determinant (or simply a minor) of Am×n is defined to be the
determinant of any k × k submatrix of A. For example,

∣

∣

∣

∣

1 2
4 5

∣

∣

∣

∣

= −3 and
∣

∣

∣

∣

2 3
8 9

∣

∣

∣

∣

= −6 are 2 × 2 minors of A =

⎛

⎝

1 2 3
4 5 6
7 8 9

⎞

⎠ .

An individual entry of A can be regarded as a 1 × 1 minor, and det (A) itself
is considered to be a 3 × 3 minor of A.

We already know that the rank of any matrix A is the size of the largest
nonsingular submatrix in A (p. 215). But (6.1.13) guarantees that the nonsingu-
lar submatrices of A are simply those submatrices with nonzero determinants,
so we have the following characterization of rank.

Rank and Determinants
• rank (A) = the size of the largest nonzero minor of A.

Example 6.1.3

Problem: Use determinants to compute the rank of A =
(

1 2 3 1
4 5 6 1
7 8 9 1

)

.

Solution: Clearly, there are 1 × 1 and 2 × 2 minors that are nonzero, so
rank (A) ≥ 2. In order to decide if the rank is three, we must see if there
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are any 3 × 3 nonzero minors. There are exactly four 3 × 3 minors, and they
are

∣

∣

∣

∣

∣

∣

1 2 3
4 5 6
7 8 9

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

1 2 1
4 5 1
7 8 1

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

1 3 1
4 6 1
7 9 1

∣

∣

∣

∣

∣

∣

= 0,

∣

∣

∣

∣

∣

∣

2 3 1
5 6 1
8 9 1

∣

∣

∣

∣

∣

∣

= 0.

Since all 3 × 3 minors are 0, we conclude that rank (A) = 2. You should be
able to see from this example that using determinants is generally not a good
way to compute the rank of a matrix.

In (6.1.12) we observed that the determinant of a product of elementary
matrices is the product of their respective determinants. We are now in a position
to extend this observation.

Product Rules
• det (AB) = det (A)det (B) for all n × n matrices. (6.1.15)

• det
(

A B
0 D

)

= det (A)det (D) if A and D are square. (6.1.16)

Proof of (6.1.15). If A is singular, then AB is also singular because (4.5.2)
says that rank (AB) ≤ rank (A). Consequently, (6.1.14) implies that

det (AB) = 0 = det (A)det (B),

so (6.1.15) is trivially true when A is singular. If A is nonsingular, then A
can be written as a product of elementary matrices A = P1P2 · · ·Pk that are
of Type I, II, or III—recall (3.9.3). Therefore, (6.1.12) can be applied to produce

det (AB) = det (P1P2 · · ·PkB) = det (P1)det (P2) · · ·det (Pk)det (B)
= det (P1P2 · · ·Pk) det (B) = det (A)det (B).

Proof of (6.1.16). First consider the special case X=
(

Ar×r 0
0 I

)

, and use the
definition to write det (X) =

∑

σ(p) x1j1x2j2 · · ·xrjrxr+1,jr+1 · · ·xn,jn . But

xrjrxr+1,jr+1 · · ·xn,jn =

⎧

⎨

⎩

1 when p =
(

1 · · · r r + 1 · · · n
j1 · · · jr r + 1 · · · n

)

,

0 for all other permutations,

so, if pr denotes permutations of only the first r positive integers, then

det (X) =
∑

σ(p)

x1j1x2j2 · · ·xrjrxr+1,jr+1 · · ·xn,jn =
∑

σ(pr)

x1j1x2j2 · · ·xrjr = det (A).
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Thus
∣

∣

∣

A 0
0 I

∣

∣

∣
= det (A). Similarly,

∣

∣

∣

I 0
0 D

∣

∣

∣
= det (D), so, by (6.1.15),

∣

∣

∣

∣

A 0
0 D

∣

∣

∣

∣

= det
{(

A 0
0 I

)(

I 0
0 D

)}

=
∣

∣

∣

∣

A 0
0 I

∣

∣

∣

∣

∣

∣

∣

∣

I 0
0 D

∣

∣

∣

∣

= det (A)det (D).

If A = QARA and D = QDRD are the respective QR factorizations (p. 345) of
A and D, then

(

A B
0 D

)

=
(

QA 0
0 QD

)(

RA QT
AB

0 RD

)

is also a QR factorization.
By (6.1.3), the determinant of a triangular matrix is the product of its diagonal
entries, and this together with the previous results yield
∣

∣

∣

∣

A B
0 D

∣

∣

∣

∣

=
∣

∣

∣

∣

QA 0
0 QD

∣

∣

∣

∣

∣

∣

∣

∣

RA QT
AB

0 RD

∣

∣

∣

∣

= det (QA)det (QD)det (RA)det (RD)

= det (QARA)det (QDRD) = det (A)det (D).

Example 6.1.4
Volume and Determinants. The definition of a determinant is purely al-
gebraic, but there is a concrete geometrical interpretation. A solid in ℜm with
parallel opposing faces whose adjacent sides are defined by vectors from a linearly
independent set {x1,x2, . . . ,xn} is called an n-dimensional parallelepiped. As
depicted in Figure 6.1.2, a two-dimensional parallelepiped is a parallelogram, and
a three-dimensional parallelepiped is a skewed rectangular box.

x1

x2

x1

x2

x3

Figure 6.1.2

Problem: When A ∈ ℜm×n has linearly independent columns, explain why
the volume of the n-dimensional parallelepiped generated by the columns of A
is Vn =

[

det
(

AT A
)]1/2

. In particular, if A is square, then Vn = |det (A)|.

Solution: Recall from Example 5.13.2 on p. 431 that if Am×n = Qm×nRn×n is
the (rectangular) QR factorization of A, then the volume of the n-dimensional
parallelepiped generated by the columns of A is Vn = ν1ν2 · · · νn = det (R),
where the νk ’s are the diagonal elements of the upper-triangular matrix R. Use
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QT Q = I together with the product rule (6.1.15) and the fact that transposition
doesn’t affect determinants (6.1.4) to write

det
(

AT A
)

= det
(

RT QT QR
)

= det
(

RT R
)

= det
(

RT
)

det (R)

= (det (R))2 = (ν1ν2 · · · νn)2 = V 2
n .

(6.1.17)

If A is square, det
(

AT A
)

= det
(

AT
)

det (A) = (det (A))2, so Vn = |det (A)|.

Hadamard’s Inequality: Recall from (5.13.7) that if

A =
[

x1 |x2 | · · · |xn

]

n×n
and Aj =

[

x1 |x2 | · · · |xj

]

n×j
,

then ν1 = ∥x1∥2 and νk = ∥(I − Pk)xk∥2 (the projected height of xk ) for
k > 1, where Pk is the orthogonal projector onto R (Ak−1). But

ν2
k = ∥(I − Pk)xk∥2

2 ≤ ∥(I − Pk)∥2
2 ∥xk∥2

2 = ∥xk∥2
2 (recall (5.13.10)),

so, by (6.1.17), det
(

AT A
)

≤ ∥x1∥2
2 ∥x2∥2

2 · · · ∥xn∥2
2 or, equivalently,

|det (A)| ≤
n
∏

k=1

∥xk∥2 =
n
∏

j=1

(

n
∑

i=1

|aij |2
)1/2

, (6.1.18)

with equality holding if and only if the xk ’s are mutually orthogonal. This
is Hadamard’s inequality. 64 In light of the preceding discussion, it simply
asserts that the volume of the parallelepiped P generated by the columns of A
can’t exceed the volume of a rectangular box whose sides have length ∥xk∥2 , a
fact that is geometrically evident because P is a skewed rectangular box with
sides of length ∥xk∥2 .

The product rule (6.1.15) provides a practical way to compute determinants.
Recall from §3.10 that for every nonsingular matrix A, there is a permutation
matrix P (which is a product of elementary interchange matrices) such that
PA = LU in which L is lower triangular with 1’s on its diagonal, and U is
upper triangular with the pivots on its diagonal. The product rule guarantees

64
Jacques Hadamard (1865–1963), a leading French mathematician of the first half of the twenti-
eth century, discovered this inequality in 1893. Influenced in part by the tragic death of his sons
in World War I, Hadamard became a peace activist whose politics drifted far left to the extent
that the United States was reluctant to allow him to enter the country to attend the Interna-
tional Congress of Mathematicians held in Cambridge, Massachusetts, in 1950. Due to support
from influential mathematicians, Hadamard was made honorary president of the congress, and
the resulting visibility together with pressure from important U.S. scientists forced officials to
allow him to attend.
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that det (P)det (A) = det (L)det (U), and we know from (6.1.9) that if E is an
elementary interchange matrix, then det (E) = −1, so

det (P) =
{

+1 if P is the product of an even number of interchanges,
−1 if P is the product of an odd number of interchanges.

The result concerning triangular determinants (6.1.3) shows that det (L) = 1
and det (U) = u11u22 · · ·unn, where the uii ’s are the pivots, so, putting these
observations together yields det (A) = ±u11u22 · · ·unn, where the sign depends
on the number of row interchanges used. Below is a summary.

Computing a Determinant
If PAn×n = LU is an LU factorization obtained with row interchanges
(use partial pivoting for numerical stability), then

det (A) = σu11u22 · · ·unn.

The uii ’s are the pivots, and σ is the sign of the permutation. That is,

σ =
{

+1 if an even number of row interchanges are used,
−1 if an odd number of row interchanges are used.

If a zero pivot emerges that cannot be removed (because all entries below
the pivot are zero), then A is singular and det (A) = 0. Exercise 6.2.18
discusses orthogonal reduction to compute det (A).

Example 6.1.5
Problem: Use partial pivoting to determine an LU decomposition PA = LU,

and then evaluate the determinant of A =

⎛

⎝

1 2 −3 4
4 8 12 −8
2 3 2 1

−3 −1 1 −4

⎞

⎠.

Solution: The LU factors of A were computed in Example 3.10.4 as follows.

L=

⎛

⎜

⎝

1 0 0 0
−3/4 1 0 0

1/4 0 1 0
1/2 −1/5 1/3 1

⎞

⎟

⎠
, U=

⎛

⎜

⎝

4 8 12 −8
0 5 10 −10
0 0 −6 6
0 0 0 1

⎞

⎟

⎠
, P=

⎛

⎜

⎝

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

⎞

⎟

⎠
.

The only modification needed is to keep track of how many row interchanges are
used. Reviewing Example 3.10.4 reveals that the pivoting process required three
interchanges, so σ = −1, and hence det (A) = (−1)(4)(5)(−6)(1) = 120.

It’s sometimes necessary to compute the derivative of a determinant whose
entries are differentiable functions. The following formula shows how this is done.
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Derivative of a Determinant
If the entries in An×n = [aij(t)] are differentiable functions of t, then

d
(

det (A)
)

dt
= det (D1) + det (D2) + · · · + det (Dn), (6.1.19)

where Di is identical to A except that the entries in the ith row are

replaced by their derivatives—i.e., [Di]k∗ =
{

Ak∗ if i ̸= k,
dAk∗/dt if i = k.

Proof. This follows directly from the definition of a determinant by writing

d
(

det (A)
)

dt
=

d

dt

∑

p

σ(p)a1p1a2p2 · · · anpn =
∑

p

σ(p)
d
(

a1p1a2p2 · · · anpn

)

dt

=
∑

p

σ(p)
(

a′
1p1

a2p2 · · · anpn + a1p1a
′
2p2

· · · anpn + · · · + a1p1a2p2 · · · a′
npn

)

=
∑

p

σ(p)a′
1p1

a2p2 · · · anpn +
∑

p

σ(p)a1p1a
′
2p2

· · · anpn

+ · · · +
∑

p

σ(p)a1p1a2p2 · · · a′
npn

= det (D1) + det (D2) + · · · + det (Dn).

Example 6.1.6
Problem: Evaluate the derivative d

(

det (A)
)

/dt for A =
(

et e−t

cos t sin t

)

.

Solution: Applying formula (6.1.19) yields

d
(

det (A)
)

dt
=
∣

∣

∣

∣

et −e−t

cos t sin t

∣

∣

∣

∣

+
∣

∣

∣

∣

et e−t

− sin t cos t

∣

∣

∣

∣

=
(

et + e−t
)

(cos t + sin t) .

Check this by first expanding det (A) and then computing the derivative.
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Exercises for section 6.1

6.1.1. Use the definition to evaluate det (A) for each of the following matrices.

(a) A =

⎛

⎝

3 −2 1
−5 4 0

2 1 6

⎞

⎠ . (b) A =

⎛

⎝

2 1 1
6 2 1

−2 2 1

⎞

⎠ .

(c) A =

⎛

⎝

0 0 α
0 β 0
γ 0 0

⎞

⎠ . (d) A =

⎛

⎝

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞

⎠ .

6.1.2. What is the volume of the parallelepiped generated by the three vectors
x1 = (3, 0,−4, 0)T , x2 = (0, 2, 0,−2)T , and x3 = (0, 1, 0, 1)T ?

6.1.3. Using Gaussian elimination to reduce A to an upper-triangular matrix,
evaluate det (A) for each of the following matrices.

(a) A =

⎛

⎝

1 2 3
2 4 1
1 4 4

⎞

⎠ . (b) A =

⎛

⎝

1 3 5
−1 4 2

3 −2 4

⎞

⎠ .

(c) A =

⎛

⎜

⎝

1 2 −3 4
4 8 12 −8
2 3 2 1

−3 −1 1 −4

⎞

⎟

⎠
. (d) A =

⎛

⎜

⎝

0 0 −2 3
1 0 1 2

−1 1 2 1
0 2 −3 0

⎞

⎟

⎠
.

(e) A =

⎛

⎜

⎜

⎜

⎝

2 −1 0 0 0
−1 2 −1 0 0

0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎞

⎟

⎟

⎟

⎠

. (f) A =

⎛

⎜

⎜

⎜

⎜

⎝

1 1 1 · · · 1
1 2 1 · · · 1
1 1 3 · · · 1
...

...
...

. . .
...

1 1 1 · · · n

⎞

⎟

⎟

⎟

⎟

⎠

.

6.1.4. Use determinants to compute the rank of A =

⎛

⎜

⎝

1 3 −2
0 1 2

−1 −1 6
2 5 −6

⎞

⎟

⎠
.

6.1.5. Use determinants to find the values of α for which the following system
possesses a unique solution.

⎛

⎝

1 α 0
0 1 −1
α 0 1

⎞

⎠

⎛

⎝

x1

x2

x3

⎞

⎠ =

⎛

⎝

−3
4
7

⎞

⎠ .
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6.1.6. If A is nonsingular, explain why det
(

A−1
)

= 1/det (A).

6.1.7. Explain why determinants are invariant under similarity transforma-
tions. That is, show det

(

P−1AP
)

= det (A) for all nonsingular P.

6.1.8. Explain why det (A∗) = det (A).

6.1.9. (a) Explain why |det (Q)| = 1 when Q is unitary. In particular,
det (Q) = ±1 if Q is an orthogonal matrix.

(b) How are the singular values of A ∈ Cn×n related to det (A)?

6.1.10. Prove that if A is m × n, then det (A∗A) ≥ 0, and explain why
det (A∗A) > 0 if and only if rank (A) = n.

6.1.11. If A is n × n, explain why det (αA) = αndet (A) for all scalars α.

6.1.12. If A is an n × n skew-symmetric matrix, prove that A is singular
whenever n is odd. Hint: Use Exercise 6.1.11.

6.1.13. How can you build random integer matrices with det (A) = 1?

6.1.14. If the kth row of An×n is written as a sum Ak∗ = xT +yT + · · ·+ zT ,
where xT,yT, . . . , zT are row vectors, explain why

det (A) = det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1∗
...

xT

...
An∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1∗
...

yT

...
An∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ · · · + det

⎛

⎜

⎜

⎜

⎜

⎜

⎝

A1∗
...

zT

...
An∗

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

6.1.15. The CBS inequality (p. 272) says that |x∗y| ≤ ∥x∥2
2 ∥y∥

2
2 for vectors

x, y ∈ Cn×1. Use Exercise 6.1.10 to give an alternate proof of the CBS
inequality along with an alternate explanation of why equality holds if
and only if y is a scalar multiple of x.
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6.1.16. Determinant Formula for Pivots. Let Ak be the k × k leading
principal submatrix of An×n (p. 148). Prove that if A has an LU
factorization A = LU, then det (Ak) = u11u22 · · ·ukk, and deduce

that the kth pivot is ukk =
{

det (A1) = a11 for k = 1,

det (Ak)/det (Ak−1) for k = 2, 3, . . . , n.

6.1.17. Prove that if rank (Am×n) = n, then AT A has an LU factorization
with positive pivots—i.e., AT A is positive definite (pp. 154 and 559).

6.1.18. Let A(x) =

⎛

⎝

2 − x 3 4
0 4 − x −5
1 −1 3 − x

⎞

⎠ .

(a) First evaluate det (A), and then compute d
(

det (A)
)

/dx.
(b) Use formula (6.1.19) to evaluate d

(

det (A)
)

/dx.

6.1.19. When the entries of A = [aij(x)] are differentiable functions of x,
we define dA/dx = [d aij/dx] (the matrix of derivatives). For square
matrices, is it always the case that d

(

det (A)
)

/dx = det (dA/dx)?

6.1.20. For a set of functions S = {f1(x), f2(x), . . . , fn(x)} that are n−1 times
differentiable, the determinant

w(x) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

f1(x) f2(x) · · · fn(x)
f ′
1(x) f ′

2(x) · · · f ′
n(x)

...
...

. . .
...

f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

is called the Wronskian of S. If S is a linearly dependent set, explain
why w(x) = 0 for every value of x. Hint: Recall Example 4.3.6 (p. 189).

6.1.21. Consider evaluating an n × n determinant from the definition (6.1.1).
(a) How many multiplications are required?
(b) Assuming a computer will do 1,000,000 multiplications per sec-

ond, and neglecting all other operations, what is the largest
order determinant that can be evaluated in one hour?

(c) Under the same conditions of part (b), how long will it take to
evaluate the determinant of a 100 × 100 matrix?
Hint: 100! ≈ 9.33 × 10157.

(d) If all other operations are neglected, how many multiplications
per second must a computer perform if the task of evaluating
the determinant of a 100 × 100 matrix is to be completed in
100 years?


