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6.2 ADDITIONAL PROPERTIES OF DETERMINANTS

The purpose of this section is to present some additional properties of determi-
nants that will be helpful in later developments.

Block Determinants
If A and D are square matrices, then

det
(

A B
C D

)

=

{

det (A)det
(

D − CA−1B
)

when A−1 exists,

det (D)det
(

A − BD−1C
)

when D−1 exists.
(6.2.1)

The matrices D − CA−1B and A − BD−1C are called the Schur
complements of A and D, respectively—see Exercise 3.7.11 on p. 123.

Proof. If A−1 exists, then
(

A B
C D

)

=
(

I 0
CA−1 I

)(

A B
0 D − CA−1B

)

, and
the product rules (p. 467) produce the first formula in (6.2.1). The second formula
follows by using a similar trick.

Since the determinant of a product is equal to the product of the deter-
minants, it’s only natural to inquire if a similar result holds for sums. In other
words, is det (A + B) = det (A)+det (B)? Almost never ! Try a couple of exam-
ples to convince yourself. Nevertheless, there are still some statements that can
be made regarding the determinant of certain types of sums. In a loose sense, the
result of Exercise 6.1.14 was a statement concerning determinants and sums,
but the following result is a little more satisfying.

Rank-One Updates
If An×n is nonsingular, and if c and d are n × 1 columns, then

• det
(

I + cdT
)

= 1 + dT c, (6.2.2)

• det
(

A + cdT
)

= det (A)
(

1 + dT A−1c
)

. (6.2.3)
Exercise 6.2.7 presents a generalized version of these formulas.

Proof. The proof of (6.2.2) follows by applying the product rules (p. 467) to
(

I 0
dT 1

)(

I + cdT c
0 1

)(

I 0
−dT 1

)

=
(

I c
0 1 + dT c

)

.

To prove (6.2.3), write A + cdT = A
(

I + A−1cdT
)

, and apply the product
rule (6.1.15) along with (6.2.2).
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Example 6.2.1

Problem: For A =

⎛

⎜

⎜

⎝

1 + λ1 1 · · · 1
1 1 + λ2 · · · 1
...

...
. . .

...
1 1 · · · 1 + λn

⎞

⎟

⎟

⎠

, λi ̸= 0, find det (A).

Solution: Express A as a rank-one updated matrix A = D + eeT , where
D = diag (λ1, λ2, . . . , λn) and eT = ( 1 1 · · · 1 ) . Apply (6.2.3) to produce

det (D + eeT ) = det (D)
(

1 + eT D−1e
)

=

(

n
∏

i=1

λi

)(

1 +
n
∑

i=1

1
λi

)

.

The classical result known as Cramer’s rule 65 is a corollary of the rank-one
update formula (6.2.3).

Cramer’s Rule
In a nonsingular system An×nx = b, the ith unknown is

xi =
det (Ai)
det (A)

,

where Ai =
[

A∗1
∣

∣ · · ·
∣

∣A∗i−1

∣

∣b
∣

∣A∗i+1

∣

∣ · · ·
∣

∣A∗n

]

. That is, Ai is
identical to A except that column A∗i has been replaced by b.

Proof. Since Ai = A + (b − A∗i) eT
i , where ei is the ith unit vector, (6.2.3)

may be applied to yield

det (Ai) = det (A)
(

1 + eT
i A−1 (b − A∗i)

)

= det (A)
(

1 + eT
i (x − ei)

)

= det (A) (1 + xi − 1) = det (A) xi.

Thus xi = det (Ai)/det (A) because A being nonsingular insures det (A) ̸= 0
by (6.1.13).

65
Gabriel Cramer (1704–1752) was a mathematician from Geneva, Switzerland. As mentioned
in §6.1, Cramer’s rule was apparently known to others long before Cramer rediscovered and
published it in 1750. Nevertheless, Cramer’s recognition is not undeserved because his work
was responsible for a revived interest in determinants and systems of linear equations. After
Cramer’s publication, Cramer’s rule met with instant success, and it quickly found its way
into the textbooks and classrooms of Europe. It is reported that there was a time when stu-
dents passed or failed the exams in the schools of public service in France according to their
understanding of Cramer’s rule.
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Example 6.2.2
Problem: Determine the value of t for which x3(t) is minimized in

⎛

⎝

t 0 1/t
0 t t2

1 t2 t3

⎞

⎠

⎛

⎝

x1(t)
x2(t)
x3(t)

⎞

⎠ =

⎛

⎝

1
1/t
1/t2

⎞

⎠ .

Solution: Only one component of the solution is required, so it’s wasted effort
to solve the entire system. Use Cramer’s rule to obtain

x3(t) =

∣

∣

∣

∣

∣

∣

t 0 1
0 t 1/t
1 t2 1/t2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t 0 1/t
0 t t2

1 t2 t3

∣

∣

∣

∣

∣

∣

=
1 − t − t2

−1
= t2 + t − 1, and set

d x3(t)
dt

= 0

to conclude that x3(t) is minimized at t = −1/2.

Recall that minor determinants of A are simply determinants of subma-
trices of A. We are now in a position to see that in an n × n matrix the
n − 1 × n − 1 minor determinants have a special significance.

Cofactors
The cofactor of An×n associated with the (i, j)-position is defined as

Åij = (−1)i+jMij ,

where Mij is the n − 1 × n − 1 minor obtained by deleting the ith row
and jth column of A. The matrix of cofactors is denoted by Å.

Example 6.2.3

Problem: For A =
(

1 −1 2
2 0 6

−3 9 1

)

, determine the cofactors Å21 and Å13.

Solution:

Å21=(−1)2+1M21 = (−1)(−19)= 19 and Å13=(−1)1+3M13=(+1)(18) = 18.

The entire matrix of cofactors is Å =
(−54 −20 18

19 7 −6
−6 −2 2

)

.



478 Chapter 6 Determinants

The cofactors of a square matrix A appear naturally in the expansion of
det (A). For example,

∣

∣

∣

∣

∣

∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣

∣

∣

∣

∣

∣

= a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

= a11 (a22a33 − a23a32) + a12 (a23a31 − a21a33)
+ a13 (a21a32 − a22a31)

= a11Å11 + a12Å12 + a13Å13.

(6.2.4)

Because this expansion is in terms of the entries of the first row and the corre-
sponding cofactors, (6.2.4) is called the cofactor expansion of det (A) in terms
of the first row. It should be clear that there is nothing special about the first
row of A. That is, it’s just as easy to write an expression similar to (6.2.4) in
which entries from any other row or column appear. For example, the terms in
(6.2.4) can be rearranged to produce

det (A) = a12 (a23a31 − a21a33) + a22 (a11a33 − a13a31) + a32 (a13a21 − a11a23)

= a12Å12 + a22Å22 + a32Å32.

This is called the cofactor expansion for det (A) in terms of the second column.
The 3 × 3 case is typical, and exactly the same reasoning can be applied to a
more general n × n matrix in order to obtain the following statements.

Cofactor Expansions
• det (A) = ai1Åi1 + ai2Åi2 + · · · + ainÅin (about row i). (6.2.5)

• det (A) = a1jÅ1j +a2jÅ2j + · · ·+anjÅnj (about column j). (6.2.6)

Example 6.2.4
Problem: Use cofactor expansions to evaluate det (A) for

A =

⎛

⎜

⎝

0 0 0 2
7 1 6 5
3 7 2 0
0 3 −1 4

⎞

⎟

⎠
.

Solution: To minimize the effort, expand det (A) in terms of the row or column
that contains a maximal number of zeros. For this example, the expansion in
terms of the first row is most efficient because

det (A) = a11Å11 + a12Å12 + a13Å13 + a14 Å14 = a14 Å14 = (2)(−1)

∣

∣

∣

∣

∣

∣

7 1 6
3 7 2
0 3 −1

∣

∣

∣

∣

∣

∣

.
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Now expand this remaining 3 × 3 determinant either in terms of the first column
or the third row. Using the first column produces

∣

∣

∣

∣

∣

∣

7 1 6
3 7 2
0 3 −1

∣

∣

∣

∣

∣

∣

= (7)(+1)
∣

∣

∣

∣

7 2
3 −1

∣

∣

∣

∣

+ (3)(−1)
∣

∣

∣

∣

1 6
3 −1

∣

∣

∣

∣

= −91 + 57 = −34,

so det (A) = (2)(−1)(−34) = 68. You may wish to try an expansion using
different rows or columns, and verify that the final result is the same.

In the previous example, we were able to take advantage of the fact that
there were zeros in convenient positions. However, for a general matrix An×n

with no zero entries, it’s not difficult to verify that successive application of
cofactor expansions requires n!

(

1 + 1
2! + 1

3! + · · · + 1
(n−1)!

)

multiplications to
evaluate det (A). Even for moderate values of n, this number is too large for
the cofactor expansion to be practical for computational purposes. Neverthe-
less, cofactors can be useful for theoretical developments such as the following
determinant formula for A−1.

Determinant Formula for A
−1

The adjugate of An×n is defined to be adj (A) = ÅT
, the transpose of

the matrix of cofactors—some older texts call this the adjoint matrix.
If A is nonsingular, then

A−1 =
ÅT

det (A)
=

adj (A)
det (A)

. (6.2.7)

Proof.
[

A−1
]

ij
is the ith component in the solution to Ax = ej , where ej

is the jth unit vector. By Cramer’s rule, this is
[

A−1
]

ij
= xi =

det (Ai)
det (A)

,

where Ai is identical to A except that the ith column has been replaced by
ej , and the cofactor expansion in terms of the ith column implies that

det (Ai) =

ith

↓
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · 0 · · · a1n
... · · ·

... · · ·
...

aj1 · · · 1 · · · ajn

... · · ·
... · · ·

...
an1 · · · 0 · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= Åji.
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Example 6.2.5
Problem: Use determinants to compute

[

A−1
]

12
and

[

A−1
]

31
for the matrix

A =

⎛

⎝

1 −1 2
2 0 6

−3 9 1

⎞

⎠ .

Solution: The cofactors Å21 and Å13 were determined in Example 6.2.3 to be
Å21 = 19 and Å13 = 18, and it’s straightforward to compute det (A) = 2, so

[

A−1
]

12
=

Å21

det (A)
=

19
2

and
[

A−1
]

31
=

Å13

det (A)
=

18
2

= 9.

Using the matrix of cofactors Å computed in Example 6.2.3, we have that

A−1 =
adj (A)
det (A)

=
ÅT

det (A)
=

1
2

⎛

⎝

−54 19 −6
−20 7 −2

18 −6 2

⎞

⎠ .

Example 6.2.6
Problem: For A =

(

a b
c d

)

, determine a general formula for A−1.

Solution: adj (A) = ÅT =
(

d −b
−c a

)

, and det (A) = ad − bc, so

A−1 =
adj (A)
det (A)

=
1

ad − bc

(

d −b
−c a

)

.

Example 6.2.7
Problem: Explain why the entries in A−1 vary continuously with the entries in
A when A is nonsingular. This is in direct contrast with the lack of continuity
exhibited by pseudoinverses (p. 423).

Solution: Recall from elementary calculus that the sum, the product, and the
quotient of continuous functions are each continuous functions. In particular,
the sum and the product of any set of numbers varies continuously as the num-
bers vary, so det (A) is a continuous function of the aij ’s. Since each entry in
adj (A) is a determinant, each quotient [A−1]ij = [adj (A)]ij/det (A) must be
a continuous function of the aij ’s.
The Moral: The formula A−1 = adj (A) /det (A) is nearly worthless for actu-
ally computing the value of A−1, but, as this example demonstrates, the formula
is nevertheless a useful mathematical tool. It’s not uncommon for applied ori-
ented students to fall into the trap of believing that the worth of a formula or
an idea is tied to its utility for computing something. This example makes the
point that things can have significant mathematical value without being compu-
tationally important. In fact, most of this chapter is in this category.
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Example 6.2.8
Problem: Explain why the inner product of one row (or column) in An×n with
the cofactors of a different row (or column) in A must always be zero.

Solution: Let Ã be the result of replacing the jth column in A by the kth

column of A. Since Ã has two identical columns, det (Ã) = 0. Furthermore, the
cofactor associated with the (i, j)-position in Ã is Åij , the cofactor associated
with the (i, j) in A, so expansion of det (Ã) in terms of the jth column yields

0 = det (Ã) =

jth

↓
kth

↓
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

a11 · · · a1k · · · a1k · · · a1n
...

...
...

ai1 · · · aik · · · aik · · · ain
...

...
...

an1 · · · ank · · · ank · · · ann

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
n
∑

i=1

aikÅij .

Thus the inner product of the kth column of An×n with the cofactors of the
jth column of A is zero. A similar result holds for rows. Combining these
observations with (6.2.5) and (6.2.6) produces

n
∑

j=1

akjÅij =
{

det (A) if k = i,
0 if k ̸= i,

and
n
∑

i=1

aikÅij =
{

det (A) if k = j,
0 if k ̸= j,

which is equivalent to saying that A[adj (A)] = [adj (A)]A = det (A) I.

Example 6.2.9
Differential Equations and Determinants. A system of n homogeneous
first-order linear differential equations

d xi(t)
dt

= ai1(t)x1(t) + ai2(t)x2(t) + · · · + ain(t)xn(t), i = 1, 2, . . . , n

can be expressed in matrix notation by writing
⎛

⎜

⎜

⎝

x′
1(t)

x′
2(t)
...

x′
n(t)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)

...
...

. . .
...

an1(t) an2(t) · · · ann(t)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x1(t)
x2(t)

...
xn(t)

⎞

⎟

⎟

⎠

or, equivalently, x′ = Ax. Let S = {w1(t), w2(t), . . . ,wn(t)} be a set of n × 1
vectors that are solutions to x′ = Ax, and place these solutions as columns in
a matrix W(t)n×n = [w1(t) |w2(t) | · · · |wn(t)] so that W′ = AW.

Problem: Prove that if w(t) = det (W), (called the Wronskian (p. 474)), then

w(t) = w(ξ0 ) e
∫ t

ξ0
traceA(ξ) dξ

, where ξ0 is an arbitrary constant. (6.2.8)
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Solution: By (6.1.19), d w(t)/dt =
∑n

i=1 det (Di), where

Di =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

w11 w12 · · · w1n
...

... · · ·
...

w′
i1 w′

i2 · · · w′
in

...
... · · ·

...
wn1 wn2 · · · wnn

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= W + eieT
i W′ − eieT

i W.

Notice that
(

−eieT
i W

)

subtracts Wi∗ from the ith row while
(

+eieT
i W′)

adds W′
i∗ to the ith row. Use the fact that W′ = AW to write

Di = W+eieT
i W′−eieT

i W = W+eieT
i AW−eieT

i W =
(

I+ei

(

eT
i A − eT

i

) )

W,

and apply formula (6.2.2) for the determinant of a rank-one updated matrix
together with the product rule (6.1.15) to produce

det (Di) =
(

1 + eT
i Aei − eT

i ei

)

det (W) = aii(t)w(t),
so

d w(t)
dt

=
n
∑

i=1

det (Di) =

(

n
∑

i=1

aii(t)

)

w(t) = traceA(t) w(t).

In other words, w(t) satisfies the first-order differential equation w′=τ w, where

τ = traceA(t), and the solution of this equation is w(t)=w(ξ0 ) e
∫ t

ξ0
τ(ξ) dξ

.

Consequences: In addition to its aesthetic elegance, (6.2.8) is a useful result
because it is the basis for the following theorems.

• If x′ = Ax has a set of solutions S = {w1(t), w2(t), . . . ,wn(t)} that is
linearly independent at some point ξ0 ∈ (a, b), and if

∫ t
ξ0

τ(ξ) dξ is finite for
t ∈ (a, b), then S must be linearly independent at every point t ∈ (a, b).

• If A is a constant matrix, and if S is a set of n solutions that is linearly
independent at some value t = ξ0 , then S must be linearly independent for
all values of t.

Proof. If S is linearly independent at ξ0 , then W(ξ0 ) is nonsingular, so

w(ξ0 ) ̸= 0. If
∫ t

ξ0
τ(ξ) dξ is finite when t ∈ (a, b), then e

∫ t

ξ0
τ(ξ) dξ

is finite
and nonzero on (a, b), so, by (6.2.8), w(t) ̸= 0 on (a, b). Therefore, W(t) is
nonsingular for t ∈ (a, b), and thus S is linearly independent at each t ∈ (a, b).

Exercises for section 6.2

6.2.1. Use a cofactor expansion to evaluate each of the following determinants.

(a)

∣

∣

∣

∣

∣

∣

2 1 1
6 2 1

−2 2 1

∣

∣

∣

∣

∣

∣

, (b)

∣

∣

∣

∣

∣

∣

∣

0 0 −2 3
1 0 1 2

−1 1 2 1
0 2 −3 0

∣

∣

∣

∣

∣

∣

∣

, (c)

∣

∣

∣

∣

∣

∣

∣

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

∣

∣

∣

∣

∣

∣

∣

.
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6.2.2. Use determinants to compute the following inverses.

(a)

⎛

⎝

2 1 1
6 2 1

−2 2 1

⎞

⎠

−1

. (b)

⎛

⎜

⎝

0 0 −2 3
1 0 1 2

−1 1 2 1
0 2 −3 0

⎞

⎟

⎠

−1

.

6.2.3. (a) Use Cramer’s rule to solve

x1 + x2 + x3 = 1,

x1 + x2 = α,

x2 + x3 = β.

(b) Evaluate limt→∞ x2(t), where x2(t) is defined by the system

x1 + tx2 + t2x3 = t4 ,

t2x1 + x2 + tx3 = t3,

tx1 + t2x2 + x3 = 0.

6.2.4. Is the following equation a valid derivation of Cramer’s rule for solving
a nonsingular system Ax = b, where Ai is as described on p. 476?

det (Ai)
det (A)

= det
(

A−1Ai

)

= det
[

e1 · · · ei−1 x ei+1 · · · en

]

= xi.

6.2.5. (a) By example, show that det (A + B) ̸= det (A) + det (B).
(b) Using square matrices, construct an example that shows that

det
(

A B
C D

)

̸= det (A)det (D) − det (B)det (C).

6.2.6. Suppose rank (Bm×n) = n, and let Q be the orthogonal projector onto
N
(

BT
)

. For A = [B | cn×1] , prove cT Qc = det
(

AT A
)

/det
(

BT B
)

.

6.2.7. If An×n is a nonsingular matrix, and if D and C are n × k matrices,
explain how to use (6.2.1) to derive the formula

det
(

A + CDT
)

= det (A)det
(

Ik + DT A−1C
)

.

Note: This is a generalization of (6.2.3) because if ci and di are the
ith columns of C and D, respectively, then

A + CDT = A + c1dT
1 + c2dT

2 + · · · + ckdT
k .
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6.2.8. Explain why A is singular if and only if A[adj (A)] = 0.

6.2.9. For a nonsingular linear system Ax = b, explain why each component
of the solution must vary continuously with the entries of A.

6.2.10. For scalars α, explain why adj (αA) = αn−1adj (A) . Hint: Recall
Exercise 6.1.11.

6.2.11. For an n × n matrix A, prove that the following statements are true.
(a) If rank (A) < n − 1, then adj (A) = 0.

(b) If rank (A) = n − 1, then rank (adj (A)) = 1.

(c) If rank (A) = n, then rank (adj (A)) = n.

6.2.12. In 1812, Cauchy discovered the formula that says that if A is n × n,
then det (adj (A)) = [det (A)]n−1. Establish Cauchy’s formula.

6.2.13. For the following tridiagonal matrix, An, let Dn = det (An), and de-
rive the formula Dn = 2Dn−1 − Dn−2 to deduce that Dn = n + 1.

An =

⎛

⎜

⎜

⎜

⎜

⎝

2 −1 0 · · · 0
−1 2 −1 · · · 0

. . . . . . . . .
0 · · · −1 2 −1
0 · · · 0 −1 2

⎞

⎟

⎟

⎟

⎟

⎠

n×n

.

6.2.14. By considering rank-one updated matrices, derive the following formulas.

(a)

∣

∣

∣

∣

∣

∣

∣

∣

∣

1+α1
α1

1 · · · 1
1 1+α2

α2
· · · 1

...
...

. . .
...

1 1 · · · 1+αn
αn

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
1 +

∑

αi
∏

αi
.

(b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α β β · · · β
β α β · · · β
β β α · · · β
...

...
...

. . .
...

β β β · · · α

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

n×n

=

{

(α − β)n
(

1 + nβ
α−β

)

if α ̸= β,

0 if α = β.

(c)

∣

∣

∣

∣

∣

∣

∣

∣

1 + α1 α2 · · · αn

α1 1 + α2 · · · αn
...

...
. . .

...
α1 α2 · · · 1 + αn

∣

∣

∣

∣

∣

∣

∣

∣

= 1 + α1 + α2 + · · · + αn.
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6.2.15. A bordered matrix has the form B =
(

A x
yT α

)

in which An×n is
nonsingular, x is a column, yT is a row, and α is a scalar. Explain
why the following statements must be true.

(a)
∣

∣

∣

∣

A x
yT −1

∣

∣

∣

∣

= −det
(

A + xyT
)

. (b)
∣

∣

∣

∣

A x
yT 0

∣

∣

∣

∣

= −yT adj (A)x.

6.2.16. If B is m × n and C is n × m, explain why (6.2.1) guarantees that
λmdet (λIn − CB) = λndet (λIm − BC) is true for all scalars λ.

6.2.17. For a square matrix A and column vectors c and d, derive the fol-
lowing two extensions of formula (6.2.3).

(a) If Ax = c, then det
(

A + cdT
)

= det (A)
(

1 + dT x
)

.
(b) If yT A = dT , then det

(

A + cdT
)

= det (A)
(

1 + yT c
)

.

6.2.18. Describe the determinant of an elementary reflector (p. 324) and a plane
rotation (p. 333), and then explain how to find det (A) using House-
holder reduction (p. 341) and Givens reduction (Example 5.7.2).

6.2.19. Suppose that A is a nonsingular matrix whose entries are integers.
Prove that the entries in A−1 are integers if and only if det (A) = ± 1.

6.2.20. Let A = I − 2uvT be a matrix in which u and v are column vectors
with integer entries.

(a) Prove that A−1 has integer entries if and only if vT u = 0 or 1.
(b) A matrix is said to be involutory whenever A−1 = A. Explain

why A = I − 2uvT is involutory when vT u = 1.

6.2.21. Use induction to argue that a cofactor expansion of det (An×n) requires

c(n) = n!
(

1 +
1
2!

+
1
3!

+ · · · + 1
(n − 1)!

)

multiplications for n ≥ 2. Assume a computer will do 1,000,000 multi-
plications per second, and neglect all other operations to estimate how
long it will take to evaluate the determinant of a 100 × 100 matrix using
cofactor expansions. Hint: Recall the series expansion for ex, and use
100! ≈ 9.33 × 10157 .
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6.2.22. Determine all values of λ for which the matrix A−λI is singular, where

A =

⎛

⎝

0 −3 −2
2 5 2

−2 −3 0

⎞

⎠ .

Hint: If p(λ) = λn + αn−1λn−1 + · · ·+ α1λ + α0 is a monic polynomial
with integer coefficients, then the integer roots of p(λ) are a subset of
the factors of α0 .

6.2.23. Suppose that f1(t), f2(t), . . . , fn(t) are solutions of nth-order linear
differential equation y(n) + p1(t)y(n−1) + · · · + pn−1(t)y′ + pn(t)y = 0,
and let w(t) be the Wronskian

w(t) =

∣

∣

∣

∣

∣

∣

∣

∣

f1(t) f2(t) · · · fn(t)
f ′
1(t) f ′

2(t) · · · f ′
n(t)

...
...

. . .
...

f (n−1)
1 (t) f (n−1)

2 (t) · · · f (n−1)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

.

By converting the nth-order equation into a system of n first-order
equations with the substitutions x1 = y, x2 = y′, . . . , xn = y(n−1),

show that w(t) = w(ξ0 ) e
−
∫ t

ξ0
p1(ξ) dξ

for an arbitrary constant ξ0 .

6.2.24. Evaluate the Vandermonde determinant by showing
∣

∣

∣

∣

∣

∣

∣

∣

1 x1 x2
1 · · · xn−1

1

1 x2 x2
2 · · · xn−1

2
...

...
... · · ·

...
1 xn x2

n · · · xn−1
n

∣

∣

∣

∣

∣

∣

∣

∣

=
∏

j>i

(xj − xi).

When is this nonzero (compare with Example 4.3.4)? Hint: For the

polynomial p(λ) =

∣

∣

∣

∣

∣

∣

∣

1 λ λ2 · · · λk−1

1 x2 x2
2 · · · xk−1

2
...

...
... · · ·

...
1 xk x2

k · · · xk−1
k

∣

∣

∣

∣

∣

∣

∣

k×k

, use induction to find the

degree of p(λ), the roots of p(λ), and the coefficient of λk−1 in p(λ).

6.2.25. Suppose that each entry in An×n = [aij(x)] is a differentiable function
of a real variable x. Use formula (6.1.19) to derive the formula

d
(

det (A)
)

dx
=

n
∑

j=1

n
∑

i=1

d aij

dx
Åij .
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6.2.26. Consider the entries of A to be independent variables, and use formula
(6.1.19) to derive the formula

∂ det (A)
∂aij

= Åij .

6.2.27. Laplace’s Expansion. In 1772, the French mathematician Pierre-Simon
Laplace (1749–1827) presented the following generalized version of the
cofactor expansion. For an n × n matrix A, let

A(i1i2 · · · ik | j1j2 · · · jk) = the k × k submatrix of A that lies on
the intersection of rows i1, i2, . . . , ik
with columns j1, j2, . . . , jk,

and let

M(i1i2 · · · ik | j1j2 · · · jk) = the n − k × n − k minor determinant
obtained by deleting rows i1, i2, . . . , ik
and columns j1, j2, . . . , jk from A.

The cofactor of A(i1 · · · ik | j1 · · · jk) is defined to be the signed minor

Å(i1 · · · ik | j1 · · · jk) = (−1)i1+···+ik+j1+···+jkM(i1 · · · ik | j1 · · · jk).

This is consistent with the definition of cofactor given earlier because if
A(i | j) = aij , then Å(i | j) = (−1)i+jM(i | j) = (−1)i+jMij = Åij . For
each fixed set of row indices 1 ≤ i1 < · · · < ik ≤ n,

det (A) =
∑

1≤j1<···<jk≤n

detA(i1 · · · ik | j1 · · · jk)Å(i1 · · · ik | j1 · · · jk).

Similarly, for each fixed set of column indices 1 ≤ j1 < · · · < jk ≤ n,

det (A) =
∑

1≤i1<···<ik≤n

detA(i1 · · · ik | j1 · · · jk)Å(i1 · · · ik | j1 · · · jk).

Each of these sums contains
(n

k

)

terms. Use Laplace’s expansion to
evaluate the determinant of

A =

⎛

⎜

⎝

0 0 −2 3
1 0 1 2

−1 1 2 1
0 2 −3 0

⎞

⎟

⎠

in terms of the first and third rows.
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(b) Using formula (6.1.19) produces

d
(
det (A)

)

dx
=

∣∣∣∣∣∣

−1 0 0
0 4− x −5
1 −1 3− x

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2− x 3 4
0 −1 0
1 −1 3− x

∣∣∣∣∣∣
+

∣∣∣∣∣∣

2− x 3 4
0 4− x −5
0 0 −1

∣∣∣∣∣∣

= (−x2 + 7x− 7) + (−x2 + 5x− 2) + (−x2 + 6x− 8)

= −3x2 + 18x− 17.

6.1.19. No—almost any 2× 2 example will show that this cannot hold in general.
6.1.20. It was argued in Example 4.3.6 that if there is at least one value of x for which

the Wronski matrix

W(x) =

⎛

⎜⎜⎜⎜⎝

f1(x) f2 (x) · · · fn(x)
f ′
1(x) f ′

2 (x) · · · f ′
n(x)

...
...

. . .
...

f (n−1)
1 (x) f (n−1)

2 (x) · · · f (n−1)
n (x)

⎞

⎟⎟⎟⎟⎠

is nonsingular, then S is a linearly independent set. This is equivalent to saying
that if S is a linearly dependent set, then the Wronski matrix W(x) is singular
for all values of x. But (6.1.14) insures that a matrix is singular if and only
if its determinant is zero, so, if S is linearly dependent, then the Wronskian
w(x) must vanish for every value of x. The converse of this statement is false
(Exercise 4.3.14).

6.1.21. (a) (n!)(n−1) (b) 11× 11 (c) About 9.24×10153 sec ≈ 3×10146

years (d) About 3 × 10150 mult/sec. (Now this would truly be a “super
computer.”)

Solutions for exercises in section 6. 2

6.2.1. (a) 8 (b) 39 (c) −3

6.2.2. (a) A−1 =
adj (A)
det (A)

=
1
8

⎛

⎝
0 1 −1
−8 4 4
16 −6 −2

⎞

⎠

(b) A−1 =
adj (A)
det (A)

=
1
39

⎛

⎜⎝

−12 25 −14 7
−9 9 9 15
−6 6 6 −3

9 4 4 −2

⎞

⎟⎠

6.2.3. (a) x1 = 1− β, x2 = α + β − 1, x3 = 1− α



Solutions 119

(b) Cramer’s rule yields

x2 (t) =

∣∣∣∣∣∣

1 t4 t2

t2 t3 t
t 0 1

∣∣∣∣∣∣

∣∣∣∣∣∣

1 t t2

t2 1 t
t t2 1

∣∣∣∣∣∣

=

t

∣∣∣∣
t4 t2

t3 t

∣∣∣∣+
∣∣∣∣
1 t4

t2 t3

∣∣∣∣

∣∣∣∣
1 t
t2 1

∣∣∣∣− t

∣∣∣∣
t2 t
t 1

∣∣∣∣+ t2
∣∣∣∣
t2 1
t t2

∣∣∣∣

=
t3 − t6

(t3 − 1)(t3 − 1)
=

−t3

(t3 − 1)
,

and hence
lim

t→∞
x2 (t) = lim

t→∞

−1
1− 1/t3

= −1.

6.2.4. Yes.
6.2.5. (a) Almost any two matrices will do the job. One example is A = I and

B = −I.
(b) Again, almost anything you write down will serve the purpose. One example
is A = D = 02×2 ,B = C = I2×2 .

6.2.6. Recall from Example 5.13.3 that Q = I−BBT B−1BT . According to (6.2.1),

det
(
AT A

)
= det

(
BT B BT c
cT B cT c

)
= det

(
BT B

) (
cT Qc

)
.

Since det
(
BT B

)
> 0 (by Exercise 6.1.10), cT Qc = det

(
AT A

)
/det

(
BT B

)
.

6.2.7. Expand
∣∣∣∣
A −C
DT Ik

∣∣∣∣ both of the ways indicated in (6.2.1).

6.2.8. The result follows from Example 6.2.8, which says A[adj (A)] = det (A) I, to-
gether with the fact that A is singular if and only if det (A) = 0.

6.2.9. The solution is x = A−1b, and Example 6.2.7 says that the entries in A−1 are
continuous functions of the entries in A. Since xi =

∑
k[A−1]ikbk, and since

the sum of continuous functions is again continuous, it follows that each xi is a
continuous function of the aij ’s.

6.2.10. If B = αA, then Exercise 6.1.11 implies B̊ ij = αn−1Åij , so B̊ = αn−1Å, and
hence adj (B) = αn−1adj (A) .

6.2.11. (a) We saw in §6.1 that rank (A) is the order of the largest nonzero minor of
A. If rank (A) < n − 1, then every minor of order n − 1 (as well as det (A)
itself) must be zero. Consequently, Å = 0, and thus adj (A) = ÅT = 0.

(b) rank (A) = n− 1 =⇒ at least one minor of order n− 1 is nonzero

=⇒ some Åij ̸= 0 =⇒ adj (A) ̸= 0
=⇒ rank (adj (A)) ≥ 1.
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Also, rank (A) = n− 1 =⇒ det (A) = 0
=⇒ A[adj (A)] = 0 (by Exercise 6.2.8)
=⇒ R (adj (A)) ⊆ N (A)
=⇒ dimR (adj (A)) ≤ dimN (A)
=⇒ rank (adj (A)) ≤ n− rank (A) = 1.

(c) rank (A) = n =⇒ det (A) ̸= 0 =⇒ adj (A) = det (A)A−1

=⇒ rank (adj (A)) = n
6.2.12. If det (A) = 0, then Exercise 6.2.11 insures that rank (adj (A)) ≤ 1. Conse-

quently, det (adj (A)) = 0, and the result is trivially true because both sides
are zero. If det (A) ̸= 0, apply the product rule (6.1.15) to A[adj (A)] =
det (A) I (from Example 6.2.8) to obtain det (A)det (adj (A)) = [det (A)]n ,
so that det (adj (A)) = [det (A)]n−1 .

6.2.13. Expanding in terms of cofactors of the first row produces Dn = 2Å11−Å12 . But
Å11 = Dn−1 and expansion using the first column yields

Å12 = (−1)

∣∣∣∣∣∣∣∣∣∣

−1 −1 0 · · · 0
0 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

. . .
...

0 0 0 · · · 2

∣∣∣∣∣∣∣∣∣∣

= (−1)(−1)Dn−2 ,

so Dn = 2Dn−1 −Dn−2 . By recursion (or by direct substitution), it is easy to
see that the solution of this equation is Dn = n + 1.

6.2.14. (a) Use the results of Example 6.2.1 with λi = 1/αi.

(b) Recognize that the matrix A is a rank-one updated matrix in the sense
that

A = (α− β)I + βeeT , where e =

⎛

⎝
1
...
1

⎞

⎠ .

If α = β, then A is singular, so det (A) = 0. If α ̸= β, then (6.2.3) may be
applied to obtain

det (A) = det
(
(α− β)I

)(
1 +

βeT e
α− β

)
= (α− β)n

(
1 +

nβ

α− β

)
.

(c) Recognize that the matrix is I + edT , where

e =

⎛

⎜⎜⎝

1
1
...
1

⎞

⎟⎟⎠ and d =

⎛

⎜⎜⎝

α1

α2
...

αn

⎞

⎟⎟⎠ .
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Apply (6.2.2) to produce the desired formula.
6.2.15. (a) Use the second formula in (6.2.1).

(b) Apply the first formula in (6.2.1) along with (6.2.7).
6.2.16. If λ = 0, then the result is trivially true because both sides are zero. If λ ̸= 0,

then expand
∣∣∣∣
λIm λB
C λIn

∣∣∣∣ both of the ways indicated in (6.2.1).

6.2.17. (a) Use the product rule (6.1.15) together with (6.2.2) to write

A + cdT = A + AxdT = A
(
I + xdT

)
.

(b) Apply the same technique used in part (a) to obtain

A + cdT = A + cyT A =
(
I + cyT

)
A.

6.2.18. For an elementary reflector R = I− 2uuT /uT u, (6.2.2) insures det (R) = −1.
If An×n is reduced to upper-triangular form (say PA = T ) by Householder
reduction as explained on p. 341, then det (P)det (A) = det (T) = t11 · · · tnn.
Since P is the product of elementary reflectors, det (A) = (−1)kt11 · · · tnn,
where k is the number of reflections used in the reduction process. In general,
one reflection is required to annihilate entries below a diagonal position, so, if
no reduction steps can be skipped, then det (A) = (−1)n−1t11 · · · tnn. If Pij is
a plane rotation, then there is a permutation matrix (a product of interchange

matrices) B such that Pij = BT

(
Q 0
0 I

)
B, where Q =

(
c s
−s c

)
with

c2 + s2 = 1. Consequently, det (Pij) = det
(
BT
) ∣∣∣∣

Q 0
0 I

∣∣∣∣ det (B) = det (Q) = 1

because det (B)det
(
BT
)

= det (B)2 = 1 by (6.1.9). Since Givens reduction
produces PA = T, where P is a product of plane rotations and T is upper
triangular, the product rule (6.1.15) insures det (P) = 1, so det (A) = det (T) =
t11 · · · tnn.

6.2.19. If det (A) = ± 1, then (6.2.7) implies A−1 = ± adj (A) , and thus A−1 is
an integer matrix because the cofactors are integers. Conversely, if A−1 is an
integer matrix, then det

(
A−1

)
and det (A) are both integers. Since

AA−1 = I =⇒ det (A)det
(
A−1

)
= 1,

it follows that det (A) = ± 1.
6.2.20. (a) Exercise 6.2.19 guarantees that A−1 has integer entries if and only if

det (A) = ± 1, and (6.2.2) says that det (A) = 1 − 2vT u, so A−1 has inte-
ger entries if and only if vT u is either 0 or 1.
(b) According to (3.9.1),

A−1 =
(
I− 2uvT

)−1
= I− 2uvT

2vT u− 1
,
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and thus A−1 = A when vT u = 1.
6.2.21. For n = 2, two multiplications are required, and c(2) = 2. Assume c(k) mul-

tiplications are required to evaluate any k × k determinant by cofactors. For a
k + 1× k + 1 matrix, the cofactor expansion in terms of the ith row is

det (A) = ai1Åi1 + · · · + aikÅik + aik+1Åik+1.

Each Åij requires c(k) multiplications, so the above expansion contains

(k + 1) + (k + 1)c(k) = (k + 1) + (k + 1)k!
(

1 +
1
2!

+
1
3!

+ · · · + 1
(k − 1)!

)

= (k + 1)!
(

1
k!

+
(

1 +
1
2!

+
1
3!

+ · · · + 1
(k − 1)!

))

= c(k + 1)

multiplications. Remember that ex = 1+x+x2/2!+x3/3!+· · · , so for n = 100,

1 +
1
2!

+
1
3!

+ · · · + 1
99!
≈ e− 1,

and c(100) ≈ 100!(e−1). Consequently, approximately 1.6×10152 seconds (i.e.,
5.1× 10144 years) are required.

6.2.22. A − λI is singular if and only if det (A− λI) = 0. The cofactor expansion in
terms of the first row yields

det (A− λI) = −λ

∣∣∣∣
5− λ 2
−3 −λ

∣∣∣∣+ 3
∣∣∣∣

2 2
−2 −λ

∣∣∣∣− 2
∣∣∣∣

2 5− λ
−2 −3

∣∣∣∣

= −λ3 + 5λ2 − 8λ + 4,

so A − λI is singular if and only if λ3 − 5λ2 + 8λ − 4 = 0. According to the
hint, the integer roots of p(λ) = λ3 −5λ2 +8λ−4 are a subset of {± 4, ± 2, ± 1}.
Evaluating p(λ) at these points reveals that λ = 2 is a root, and either ordinary
or synthetic division produces

p(λ)
λ− 2

= λ2 − 3λ + 2 = (λ− 2)(λ− 1).

Therefore, p(λ) = (λ− 2)2 (λ− 1), so λ = 2 and λ = 1 are the roots of p(λ),
and these are the values for which A− λI is singular.

6.2.23. The indicated substitutions produce the system
⎛

⎜⎜⎜⎜⎝

x′
1

x′
2
...

x′
n−1

x′
n

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−pn −pn−1 −pn−2 · · · −p1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

x1

x2
...

xn−1

xn

⎞

⎟⎟⎟⎟⎠
.
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Each of the n vectors wi =
(
fi(t) f ′

i(t) · · · f (n−1)
i

)T for i = 1, 2, . . . , n
satisfies this system, so (6.2.8) may be applied to produce the desired conclusion.

6.2.24. The result is clearly true for n = 2. Assume the formula holds for n = k − 1,
and prove that it must also hold for n = k. According to the cofactor expansion
in terms of the first row, deg p(λ) = k − 1, and it’s clear that

p(x2 ) = p(x3 ) = · · · = p(xk) = 0,

so x2 , x3 , . . . , xk are the k − 1 roots of p(λ). Consequently,

p(λ) = α(λ− x2 )(λ− x3 ) · · · (λ− xk),

where α is the coefficient of λk−1. But the coefficient of λk−1 is the cofactor
associated with the (1, k) -entry, so the induction hypothesis yields

α = (−1)k−1

∣∣∣∣∣∣∣∣

1 x2 x2
2 · · · xk−2

2

1 x3 x2
3 · · · xk−2

3
...

...
... · · ·

...
1 xk x2

k · · · xk−2
k

∣∣∣∣∣∣∣∣
k−1×k−1

= (−1)k−1
∏

j>i≥2

(xj − xi).

Therefore,

det (Vk) = p(x1) = (x1 − x2 )(x1 − x3 ) · · · (x1 − xk)α

= (x1 − x2 )(x1 − x3 ) · · · (x1 − xk)
(
(−1)k−1

∏

j>i≥2

(xj − xi)
)

= (x2 − x1)(x3 − x1) · · · (xk − x1)
∏

j>i≥2

(xj − xi)

=
∏

j>i

(xj − xi),

and the formula is proven. The determinant is nonzero if and only if the xi ’s
are distinct numbers, and this agrees with the conclusion in Example 4.3.4.

6.2.25. According to (6.1.19),

d
(
det (A)

)

dx
= det (D1) + det (D2 ) + · · · + det (Dn),

where Di is the matrix

Di =

⎛

⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
...

... · · ·
...

a′
i1 a′

i2 · · · a′
in

...
... · · ·

...
an1 an2 · · · ann

⎞

⎟⎟⎟⎟⎟⎠
.
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Expanding det (Di) in terms of cofactors of the ith row yields

det (Ai) = a′
i1Åi1 + a′

i2 Åi2 + · · · + a′
inÅin,

so the desired conclusion is obtained.
6.2.26. According to (6.1.19),

∂ det (A)
∂aij

= det (Di) =

∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1j · · · a1n

... · · ·
... · · ·

...
0 · · · 1 · · · 0
... · · ·

... · · ·
...

an1 · · · anj · · · ann

∣∣∣∣∣∣∣∣∣∣∣

← row i = Åij .

6.2.27. The
(4
2

)
= 6 ways to choose pairs of column indices are

(1, 2) (1, 3) (1, 4)
(2, 3) (2, 4)

(3, 4)

so that the Laplace expansion using i1 = 1 and i2 = 3 is

det (A) = detA(1, 3 | 1, 2) Å(1, 3 | 1, 2) + detA(1, 3 | 1, 3) Å(1, 3 | 1, 3)

+ detA(1, 3 | 1, 4) Å(1, 3 | 1, 4) + detA(1, 3 | 2, 3) Å(1, 3 | 2, 3)

+ detA(1, 3 | 2, 4) Å(1, 3 | 2, 4) + detA(1, 3 | 3, 4) Å(1, 3 | 3, 4)
= 0 + (−2)(−4) + (−1)(3)(−2) + 0 + (−3)(−3) + (−1)(−8)(2)
= 39.


