
CHAPTER 7

Eigenvalues
and

Eigenvectors

7.1 ELEMENTARY PROPERTIES OF EIGENSYSTEMS

Up to this point, almost everything was either motivated by or evolved from the
consideration of systems of linear algebraic equations. But we have come to a
turning point, and from now on the emphasis will be different. Rather than being
concerned with systems of algebraic equations, many topics will be motivated
or driven by applications involving systems of linear differential equations and
their discrete counterparts, difference equations.

For example, consider the problem of solving the system of two first-order
linear differential equations, du1/dt = 7u1 − 4u2 and du2/dt = 5u1 − 2u2. In
matrix notation, this system is

(
u′

1

u′
2

)
=
(

7 −4
5 −2

)(
u1

u2

)
or, equivalently, u′ = Au, (7.1.1)

where u′ =
(

u′
1

u′
2

)
, A =

(
7 −4
5 −2

)
, and u =

(
u1
u2

)
. Because solutions of a single

equation u′ = λu have the form u = αeλt, we are motivated to seek solutions
of (7.1.1) that also have the form

u1 = α1eλt and u2 = α2eλt. (7.1.2)

Differentiating these two expressions and substituting the results in (7.1.1) yields

α1λeλt = 7α1eλt − 4α2eλt

α2λeλt = 5α1eλt − 2α2eλt
⇒

α1λ = 7α1 − 4α2

α2λ = 5α1 − 2α2

⇒
( 7 −4

5 −2

)(
α1

α2

)
=λ

(
α1

α2

)
.
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In other words, solutions of (7.1.1) having the form (7.1.2) can be constructed
provided solutions for λ and x =

(
α1
α2

)
in the matrix equation Ax = λx can

be found. Clearly, x = 0 trivially satisfies Ax = λx, but x = 0 provides no
useful information concerning the solution of (7.1.1). What we really need are
scalars λ and nonzero vectors x that satisfy Ax = λx. Writing Ax = λx
as (A− λI)x = 0 shows that the vectors of interest are the nonzero vectors in
N (A− λI) . But N (A− λI) contains nonzero vectors if and only if A − λI
is singular. Therefore, the scalars of interest are precisely the values of λ that
make A − λI singular or, equivalently, the λ ’s for which det (A− λI) = 0.
These observations motivate the definition of eigenvalues and eigenvectors. 66

Eigenvalues and Eigenvectors
For an n×n matrix A, scalars λ and vectors xn× 1 ̸= 0 satisfying
Ax = λx are called eigenvalues and eigenvectors of A, respectively,
and any such pair, (λ,x), is called an eigenpair for A. The set of
distinct eigenvalues, denoted by σ (A) , is called the spectrum of A.

• λ ∈ σ (A)⇐⇒ A− λI is singular ⇐⇒ det (A− λI) = 0. (7.1.3)

•
{
x ̸= 0

∣∣ x ∈ N (A− λI)
}

is the set of all eigenvectors associated
with λ. From now on, N (A− λI) is called an eigenspace for A.

• Nonzero row vectors y∗ such that y∗(A− λI) = 0 are called left-
hand eigenvectors for A (see Exercise 7.1.18 on p. 503).

Geometrically, Ax = λx says that under transformation by A, eigenvec-
tors experience only changes in magnitude or sign—the orientation of Ax in ℜn

is the same as that of x. The eigenvalue λ is simply the amount of “stretch”
or “shrink” to which the eigenvector x is subjected when transformed by A.
Figure 7.1.1 depicts the situation in ℜ2.

Ax = λx

x

Figure 7.1.1

66
The words eigenvalue and eigenvector are derived from the German word eigen, which means
owned by or peculiar to. Eigenvalues and eigenvectors are sometimes called characteristic values
and characteristic vectors, proper values and proper vectors, or latent values and latent vectors.
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Let’s now face the problem of finding the eigenvalues and eigenvectors of
the matrix A =

(
7 −4
5 −2

)
appearing in (7.1.1). As noted in (7.1.3), the eigen-

values are the scalars λ for which det (A− λI) = 0. Expansion of det (A− λI)
produces the second-degree polynomial

p(λ) = det (A− λI) =
∣∣∣∣
7− λ −4

5 −2− λ

∣∣∣∣ = λ2 − 5λ + 6 = (λ− 2)(λ− 3),

which is called the characteristic polynomial for A. Consequently, the eigen-
values for A are the solutions of the characteristic equation p(λ) = 0 (i.e.,
the roots of the characteristic polynomial), and they are λ = 2 and λ = 3.

The eigenvectors associated with λ = 2 and λ = 3 are simply the nonzero
vectors in the eigenspaces N (A− 2I) and N (A− 3I), respectively. But deter-
mining these eigenspaces amounts to nothing more than solving the two homo-
geneous systems, (A− 2I)x = 0 and (A− 3I)x = 0.

For λ = 2,

A− 2I =
(

5 −4
5 −4

)
−→

(
1 −4/5
0 0

)
=⇒ x1 = (4/5)x2

x2 is free

=⇒ N (A− 2I) =
{
x
∣∣∣ x = α

(
4/5
1

)}
.

For λ = 3,

A− 3I =
(

4 −4
5 −5

)
−→

(
1 −1
0 0

)
=⇒ x1 = x2

x2 is free

=⇒ N (A− 3I) =
{
x
∣∣∣ x = β

(
1
1

)}
.

In other words, the eigenvectors of A associated with λ = 2 are all nonzero
multiples of x = ( 4/5 1 )T , and the eigenvectors associated with λ = 3 are
all nonzero multiples of y = ( 1 1 )T . Although there are an infinite number of
eigenvectors associated with each eigenvalue, each eigenspace is one dimensional,
so, for this example, there is only one independent eigenvector associated with
each eigenvalue.

Let’s complete the discussion concerning the system of differential equations
u′ = Au in (7.1.1). Coupling (7.1.2) with the eigenpairs (λ1,x) and (λ2,y) of
A computed above produces two solutions of u′ = Au, namely,

u1 = eλ1tx = e2t

(
4/5
1

)
and u2 = eλ2ty = e3t

(
1
1

)
.

It turns out that all other solutions are linear combinations of these two particular
solutions—more is said in §7.4 on p. 541.

Below is a summary of some general statements concerning features of the
characteristic polynomial and the characteristic equation.
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Characteristic Polynomial and Equation
• The characteristic polynomial of An× n is p(λ) = det (A− λI).

The degree of p(λ) is n, and the leading term in p(λ) is (−1)nλn.

• The characteristic equation for A is p(λ) = 0.

• The eigenvalues of A are the solutions of the characteristic equation
or, equivalently, the roots of the characteristic polynomial.

• Altogether, A has n eigenvalues, but some may be complex num-
bers (even if the entries of A are real numbers), and some eigenval-
ues may be repeated.

• If A contains only real numbers, then its complex eigenvalues must
occur in conjugate pairs—i.e., if λ ∈ σ (A) , then λ ∈ σ (A) .

Proof. The fact that det (A− λI) is a polynomial of degree n whose leading
term is (−1)nλn follows from the definition of determinant given in (6.1.1). If

δij =
{

1 if i = j,
0 if i ̸= j,

then

det (A− λI) =
∑

p

σ(p)(a1p1 − δ1p1λ)(a2p2 − δ2p2λ) · · · (anpn − δnpnλ)

is a polynomial in λ. The highest power of λ is produced by the term

(a11 − λ)(a22 − λ) · · · (ann − λ),

so the degree is n, and the leading term is (−1)nλn. The discussion given
earlier contained the proof that the eigenvalues are precisely the solutions of the
characteristic equation, but, for the sake of completeness, it’s repeated below:

λ ∈ σ (A)⇐⇒ Ax = λx for some x ̸= 0⇐⇒ (A− λI)x = 0 for some x ̸= 0
⇐⇒ A− λI is singular⇐⇒ det (A− λI) = 0.

The fundamental theorem of algebra is a deep result that insures every poly-
nomial of degree n with real or complex coefficients has n roots, but some
roots may be complex numbers (even if all the coefficients are real), and some
roots may be repeated. Consequently, A has n eigenvalues, but some may be
complex, and some may be repeated. The fact that complex eigenvalues of real
matrices must occur in conjugate pairs is a consequence of the fact that the roots
of a polynomial with real coefficients occur in conjugate pairs.
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Example 7.1.1
Problem: Determine the eigenvalues and eigenvectors of A =

(
1 −1
1 1

)
.

Solution: The characteristic polynomial is

det (A− λI) =
∣∣∣∣
1− λ −1

1 1− λ

∣∣∣∣ = (1− λ)2 + 1 = λ2 − 2λ + 2,

so the characteristic equation is λ2 − 2λ + 2 = 0. Application of the quadratic
formula yields

λ =
2 ±
√
−4

2
=

2 ± 2
√
−1

2
= 1 ± i,

so the spectrum of A is σ (A) = {1 + i, 1− i}. Notice that the eigenvalues are
complex conjugates of each other—as they must be because complex eigenvalues
of real matrices must occur in conjugate pairs. Now find the eigenspaces.
For λ = 1 + i,

A− λI =
(
−i −1
1 −i

)
−→

(
1 −i
0 0

)
=⇒ N (A− λI) = span

{(
i
1

)}
.

For λ = 1− i,

A− λI =
(

i −1
1 i

)
−→

(
1 i
0 0

)
=⇒ N (A− λI) = span

{(
−i
1

)}
.

In other words, the eigenvectors associated with λ1 = 1 + i are all nonzero
multiples of x1 = ( i 1 )T , and the eigenvectors associated with λ2 = 1 − i
are all nonzero multiples of x2 = (−i 1 )T . In previous sections, you could
be successful by thinking only in terms of real numbers and by dancing around
those statements and issues involving complex numbers. But this example makes
it clear that avoiding complex numbers, even when dealing with real matrices,
is no longer possible—very innocent looking matrices, such as the one in this
example, can possess complex eigenvalues and eigenvectors.

As we have seen, computing eigenvalues boils down to solving a polynomial
equation. But determining solutions to polynomial equations can be a formidable
task. It was proven in the nineteenth century that it’s impossible to express
the roots of a general polynomial of degree five or higher using radicals of the
coefficients. This means that there does not exist a generalized version of the
quadratic formula for polynomials of degree greater than four, and general poly-
nomial equations cannot be solved by a finite number of arithmetic operations
involving +,− ,× ,÷, n

√ . Unlike solving Ax = b, the eigenvalue problem gener-
ally requires an infinite algorithm, so all practical eigenvalue computations are
accomplished by iterative methods—some are discussed later.
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For theoretical work, and for textbook-type problems, it’s helpful to express
the characteristic equation in terms of the principal minors. Recall that an r×r
principal submatrix of An× n is a submatrix that lies on the same set of r
rows and columns, and an r×r principal minor is the determinant of an r×r
principal submatrix. In other words, r×r principal minors are obtained by
deleting the same set of n−r rows and columns, and there are

(n
r

)
= n!/r!(n−r)!

such minors. For example, the 1×1 principal minors of

A =

⎛

⎝
−3 1 −3
20 3 10
2 −2 4

⎞

⎠ (7.1.4)

are the diagonal entries −3, 3, and 4. The 2×2 principal minors are
∣∣∣∣
−3 1
20 3

∣∣∣∣ = −29,

∣∣∣∣
−3 −3

2 4

∣∣∣∣ = −6, and
∣∣∣∣

3 10
−2 4

∣∣∣∣ = 32,

and the only 3×3 principal minor is det (A) = −18.
Related to the principal minors are the symmetric functions of the eigenval-

ues. The kth symmetric function of λ1, λ2, . . . , λn is defined to be the sum
of the product of the eigenvalues taken k at a time. That is,

sk =
∑

1≤i1<···<ik≤n

λi1 · · ·λik .

For example, when n = 4,

s1 = λ1 + λ2 + λ3+ λ4,

s2 = λ1λ2 + λ1λ3+ λ1λ4+ λ2λ3+ λ2λ4+ λ3λ4,

s3= λ1λ2λ3+ λ1λ2λ4+ λ1λ3λ4+ λ2λ3λ4,

s4= λ1λ2λ3λ4.

The connection between symmetric functions, principal minors, and the coeffi-
cients in the characteristic polynomial is given in the following theorem.

Coefficients in the Characteristic Equation
If λn + c1λn− 1 + c2λn− 2 + · · · + cn− 1λ + cn = 0 is the characteristic
equation for An× n, and if sk is the kth symmetric function of the
eigenvalues λ1, λ2, . . . , λn of A, then

• ck = (−1)k
∑

(all k×k principal minors), (7.1.5)
• sk =

∑
(all k×k principal minors), (7.1.6)

• trace (A) = λ1 + λ2 + · · · + λn = −c1, (7.1.7)
• det (A) = λ1λ2 · · ·λn = (−1)ncn. (7.1.8)
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Proof. At least two proofs of (7.1.5) are possible, and although they are concep-
tually straightforward, each is somewhat tedious. One approach is to successively
use the result of Exercise 6.1.14 to expand det (A− λI). Another proof rests on
the observation that if

p(λ) = det(A− λI) = (−1)nλn + a1λ
n− 1 + a2λ

n− 2 + · · · + an− 1λ + an

is the characteristic polynomial for A, then the characteristic equation is

λn + c1λ
n− 1 + c2λ

n− 2 + · · · + cn− 1λ + cn = 0, where ci = (−1)nai.

Taking the rth derivative of p(λ) yields p(r)(0) = r!an− r, and hence

cn− r =
(−1)n

r!
p(r)(0). (7.1.9)

It’s now a matter of repeatedly applying the formula (6.1.19) for differentiating
a determinant to p(λ) = det (A− λI). After r applications of (6.1.19),

p(r)(λ) =
∑

ij ̸=ik

Di1···ir (λ),

where Di1···ir (λ) is the determinant of the matrix identical to A − λI except
that rows i1, i2, . . . , ir have been replaced by −eT

i1 , −eT
i2 , . . . ,−eT

ir
, respectively.

It follows that Di1···ir (0) = (−1)rdet (Ai1···ir ), where Ai1i2···ir is identical to
A except that rows i1, i2, . . . , ir have been replaced by eT

i1 , eT
i2 , . . . , e

T
ir

, re-
spectively, and det (Ai1···ir ) is the n− r×n− r principal minor obtained by
deleting rows and columns i1, i2, . . . , ir from A. Consequently,

p(r)(0) =
∑

ij ̸=ik

Di1···ir (0) = (−1)r
∑

ij ̸=ik

det (Ai1···ir )

= r!×(−1)r
∑

(all n− r×n− r principal minors).

The factor r! appears because each of the r! permutations of the subscripts on
Ai1···ir describes the same matrix. Therefore, (7.1.9) says

cn− r =
(−1)n

r!
p(r)(0) = (−1)n− r

∑
(all n− r×n− r principal minors).

To prove (7.1.6), write the characteristic equation for A as

(λ− λ1)(λ− λ2) · · · (λ− λn) = 0, (7.1.10)

and expand the left-hand side to produce

λn − s1λ
n− 1 + · · · + (−1)kskλn− k + · · · + (−1)nsn = 0. (7.1.11)

(Using n = 3 or n = 4 in (7.1.10) makes this clear.) Comparing (7.1.11)
with (7.1.5) produces the desired conclusion. Statements (7.1.7) and (7.1.8) are
obtained from (7.1.5) and (7.1.6) by setting k = 1 and k = n.
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Example 7.1.2
Problem: Determine the eigenvalues and eigenvectors of

A =

⎛

⎝
−3 1 −3
20 3 10
2 −2 4

⎞

⎠ .

Solution: Use the principal minors computed in (7.1.4) along with (7.1.5) to
obtain the characteristic equation

λ3− 4λ2 − 3λ + 18 = 0.

A result from elementary algebra states that if the coefficients αi in

λn + αn− 1λ
n− 1 + · · · + α1λ + α0= 0

are integers, then every integer solution is a factor of α0. For our problem, this
means that if there exist integer eigenvalues, then they must be contained in the
set S = {± 1, ± 2, ± 3, ± 6, ± 9, ± 18}. Evaluating p(λ) for each λ ∈ S reveals
that p(3) = 0 and p(−2) = 0, so λ = 3 and λ = −2 are eigenvalues for A.
To determine the other eigenvalue, deflate the problem by dividing

λ3− 4λ2 − 3λ + 18
λ− 3

= λ2 − λ− 6 = (λ− 3)(λ + 2).

Thus the characteristic equation can be written in factored form as

(λ− 3)2(λ + 2) = 0,

so the spectrum of A is σ (A) = {3, −2} in which λ = 3 is repeated—we say
that the algebraic multiplicity of λ = 3 is two. The eigenspaces are obtained
as follows.

For λ = 3,

A− 3I −→

⎛

⎝
1 0 1/2
0 1 0
0 0 0

⎞

⎠ =⇒ N (A− 3I) = span

⎧
⎨

⎩

⎛

⎝
−1

0
2

⎞

⎠

⎫
⎬

⎭
.

For λ = −2,

A + 2I −→

⎛

⎝
1 0 1
0 1 −2
0 0 0

⎞

⎠ =⇒ N (A + 2I) = span

⎧
⎨

⎩

⎛

⎝
−1

2
1

⎞

⎠

⎫
⎬

⎭
.

Notice that although the algebraic multiplicity of λ = 3 is two, the dimen-
sion of the associated eigenspace is only one—we say that A is deficient in
eigenvectors. As we will see later, deficient matrices pose significant difficulties.
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Example 7.1.3
Continuity of Eigenvalues. A classical result (requiring complex analysis)
states that the roots of a polynomial vary continuously with the coefficients. Since
the coefficients of the characteristic polynomial p(λ) of A can be expressed
in terms of sums of principal minors, it follows that the coefficients of p(λ)
vary continuously with the entries of A. Consequently, the eigenvalues of A
must vary continuously with the entries of A. Caution! Components of an
eigenvector need not vary continuously with the entries of A —e.g., consider
x = (ϵ− 1, 1) as an eigenvector for A =

(
0 1
0 ϵ

)
, and let ϵ→ 0.

Example 7.1.4
Spectral Radius. For square matrices A, the number

ρ(A) = max
λ∈σ(A)

|λ|

is called the spectral radius of A. It’s not uncommon for applications to
require only a bound on the eigenvalues of A. That is, precise knowledge of
each eigenvalue may not called for, but rather just an upper bound on ρ(A)
is all that’s often needed. A rather crude (but cheap) upper bound on ρ(A)
is obtained by observing that ρ(A) ≤ ∥A∥ for every matrix norm. This is
true because if (λ,x) is any eigenpair, then X =

[
x |0 | · · · |0

]
n× n
̸= 0, and

λX = AX implies |λ| ∥X∥ = ∥λX∥ = ∥AX∥ ≤ ∥A∥ ∥X∥ , so

|λ| ≤ ∥A∥ for all λ ∈ σ (A) . (7.1.12)

This result is a precursor to a stronger relationship between spectral radius
and norm that is hinted at in Exercise 7.3.12 and developed in Example 7.10.1
(p. 619).

The eigenvalue bound (7.1.12) given in Example 7.1.4 is cheap to compute,
especially if the 1-norm or ∞-norm is used, but you often get what you pay
for. You get one big circle whose radius is usually much larger than the spectral
radius ρ(A). It’s possible to do better by using a set of Gerschgorin 67 circles as
described below.

67
S. A. Gerschgorin illustrated the use of Gerschgorin circles for estimating eigenvalues in 1931,
but the concept appears earlier in work by L. Lévy in 1881, by H. Minkowski (p. 278) in 1900,
and by J. Hadamard (p. 469) in 1903. However, each time the idea surfaced, it gained little
attention and was quickly forgotten until Olga Taussky (1906–1995), the premier woman of
linear algebra, and her fellow German emigrè Alfred Brauer (1894–1985) became captivated
by the result. Taussky (who became Olga Taussky-Todd after marrying the numerical analyst
John Todd) and Brauer devoted significant effort to strengthening, promoting, and popularizing
Gerschgorin-type eigenvalue bounds. Their work during the 1940s and 1950s ended the periodic
rediscoveries, and they made Gerschgorin (who might otherwise have been forgotten) famous.
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Gerschgorin Circles

• The eigenvalues of A ∈ Cn× n are contained the union Gr of the n
Gerschgorin circles defined by

|z − aii| ≤ ri, where ri =
n∑

j=1
j ̸=i

|aij | for i = 1, 2, . . . , n. (7.1.13)

In other words, the eigenvalues are trapped in the collection of circles
centered at aii with radii given by the sum of absolute values in Ai∗
with aii deleted.

• Furthermore, if a union U of k Gerschgorin circles does not touch
any of the other n− k circles, then there are exactly k eigenvalues
(counting multiplicities) in the circles in U . (7.1.14)

• Since σ(AT ) = σ (A) , the deleted absolute row sums in (7.1.13)
can be replaced by deleted absolute column sums, so the eigenvalues
of A are also contained in the union Gc of the circles defined by

|z − ajj | ≤ cj , where cj =
n∑

i=1
i̸=j

|aij | for j = 1, 2, . . . , n. (7.1.15)

• Combining (7.1.13) and (7.1.15) means that the eigenvalues of A
are contained in the intersection Gr ∩ Gc. (7.1.16)

Proof. Let (λ,x) be an eigenpair for A, and assume x has been normalized
so that ∥x∥∞ = 1. If xi is a component of x such that |xi| = 1, then

λxi = [λx]i = [Ax]i =
n∑

j=1

aijxj =⇒ (λ− aii)xi =
n∑

j=1
j ̸=i

aijxj ,

and hence

|λ− aii| =|λ− aii| |xi| =
∣∣∣∣
∑

j ̸=i

aijxj

∣∣∣∣ ≤
∑

j ̸=i

|aij | |xj | ≤
∑

j ̸=i

|aij | = ri.

Thus λ is in one of the Gerschgorin circles, so the union of all such circles
contains σ (A) . To establish (7.1.14), let D = diag (a11, a22, . . . , ann) and
B = A−D, and set C(t) = D+ tB for t ∈ [0, 1]. The first part shows that the
eigenvalues of λi(t) of C(t) are contained in the union of the Gerschgorin circles
Ci(t) defined by |z−aii| ≤ t ri. The circles Ci(t) grow continuously with t from
individual points aii when t = 0 to the Gerschgorin circles of A when t = 1,
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so, if the circles in the isolated union U are centered at ai1i1 , ai2i2 , . . . , aikik ,
then for every t ∈ [0, 1] the union U(t) = Ci1(t) ∪ Ci2(t) ∪ · · · ∪ Cik(t) is dis-
joint from the union U(t) of the other n− k Gerschgorin circles of C(t). Since
(as mentioned in Example 7.1.3) each eigenvalue λi(t) of C(t) also varies con-
tinuously with t, each λi(t) is on a continuous curve Γi having one end at
λi(0) = aii and the other end at λi(1) ∈ σ (A) . But since U(t) ∩ U(t) = φ for
all t ∈ [0, 1], the curves Γi1 ,Γi2 , . . . ,Γik are entirely contained in U , and hence
the end points λi1(1), λi2(1), . . . , λik(1) are in U . Similarly, the other n − k
eigenvalues of A are in the union of the complementary set of circles.

Example 7.1.5

Problem: Estimate the eigenvalues of A =
(

5 1 1
0 6 1
1 0 −5

)
.

• A crude estimate is derived from the bound given in Example 7.1.4 on p. 497.
Using the ∞-norm, (7.1.12) says that |λ| ≤ ∥A∥∞ = 7 for all λ ∈ σ (A) .

• Better estimates are produced by the Gerschgorin circles in Figure 7.1.2 that
are derived from row sums. Statements (7.1.13) and (7.1.14) guarantee that
one eigenvalue is in (or on) the circle centered at −5, while the remaining
two eigenvalues are in (or on) the larger circle centered at +5.

1 2 3 4 5 6 7-1-2-3-4-5-6-7

Figure 7.1.2. Gerschgorin circles derived from row sums.

• The best estimate is obtained from (7.1.16) by considering Gr ∩ Gc.

1 2 3 4 5 6 7-1-2-3-4-5-6-7

Figure 7.1.3. Gerschgorin circles derived from Gr ∩ Gc.

In other words, one eigenvalue is in the circle centered at −5, while the other
two eigenvalues are in the union of the other two circles in Figure 7.1.3. This is
corroborated by computing σ (A)={5, (1± 5

√
5)/2} ≈ {5, 6.0902, −5.0902}.

Example 7.1.6
Diagonally Dominant Matrices Revisited. Recall from Example 4.3.3 on
p. 184 that An× n is said to be diagonally dominant (some authors say strictly
diagonally dominant) whenever
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|aii| >
n∑

j=1
j ̸=i

|aij | for each i = 1, 2, . . . , n.

Gerschgorin’s theorem (7.1.13) guarantees that diagonally dominant matrices
cannot possess a zero eigenvalue. But 0 /∈ σ (A) if and only if A is nonsingular
(Exercise 7.1.6), so Gerschgorin’s theorem provides an alternative to the argu-
ment used in Example 4.3.3 to prove that all diagonally dominant matrices are
nonsingular .68 For example, the 3×3 matrix A in Example 7.1.5 is diagonally
dominant, and thus A is nonsingular. Even when a matrix is not diagonally
dominant, Gerschgorin estimates still may be useful in determining whether or
not the matrix is nonsingular simply by observing if zero is excluded from σ (A)
based on the configuration of the Gerschgorin circles given in (7.1.16).

Exercises for section 7.1

7.1.1. Determine the eigenvalues and eigenvectors for the following matrices.

A =
(
−10 −7

14 11

)
. B =

⎛

⎝
2 16 8
4 14 8
−8 −32 −18

⎞

⎠ . C =

⎛

⎝
3 −2 5
0 1 4
0 −1 5

⎞

⎠ .

D =

⎛

⎝
0 6 3
−1 5 1
−1 2 4

⎞

⎠ . E =

⎛

⎝
3 0 0
0 3 0
0 0 3

⎞

⎠ .

Which, if any, are deficient in eigenvectors in the sense that there fails
to exist a complete linearly independent set?

7.1.2. Without doing an eigenvalue–eigenvector computation, determine which
of the following are eigenvectors for

A =

⎛

⎜⎝

−9 −6 −2 −4
−8 −6 −3 −1
20 15 8 5
32 21 7 12

⎞

⎟⎠ ,

and for those which are eigenvectors, identify the associated eigenvalue.

(a)

⎛

⎜⎝

−1
1
0
1

⎞

⎟⎠ . (b)

⎛

⎜⎝

1
0
−1

0

⎞

⎟⎠ . (c)

⎛

⎜⎝

−1
0
2
2

⎞

⎟⎠ . (d)

⎛

⎜⎝

0
1
−3

0

⎞

⎟⎠ .

68
In fact, this result was the motivation behind the original development of Gerschgorin’s circles.
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7.1.3. Explain why the eigenvalues of triangular and diagonal matrices

T =

⎛

⎜⎜⎝

t11 t12 · · · t1n

0 t22 · · · t2n
...

...
. . .

...
0 0 · · · tnn

⎞

⎟⎟⎠ and D =

⎛

⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞

⎟⎟⎠

are simply the diagonal entries—the tii ’s and λi ’s.

7.1.4. For T =
(

A B
0 C

)
, prove det (T− λI) = det (A− λI)det (C− λI) to

conclude that σ
(

A B
0 C

)
= σ (A) ∪ σ (C) for square A and C.

7.1.5. Determine the eigenvectors of D = diag (λ1, λ2, . . . , λn) . In particular,
what is the eigenspace associated with λi?

7.1.6. Prove that 0 ∈ σ (A) if and only if A is a singular matrix.

7.1.7. Explain why it’s apparent that An× n =

⎛

⎜⎜⎝

n 1 1 · · · 1
1 n 1 · · · 1
1 1 n · · · 1
...

...
...

. . .
...

1 1 1 · · · n

⎞

⎟⎟⎠ doesn’t

have a zero eigenvalue, and hence why A is nonsingular.

7.1.8. Explain why the eigenvalues of A∗A and AA∗ are real and nonneg-
ative for every A ∈ Cm× n. Hint: Consider ∥Ax∥22 / ∥x∥22 . When are
the eigenvalues of A∗A and AA∗ strictly positive?

7.1.9. (a) If A is nonsingular, and if (λ, x) is an eigenpair for A, show
that

(
λ− 1, x

)
is an eigenpair for A− 1.

(b) For all α /∈ σ(A), prove that x is an eigenvector of A if and
only if x is an eigenvector of (A− αI)− 1.

7.1.10. (a) Show that if (λ, x) is an eigenpair for A, then (λk, x) is an
eigenpair for Ak for each positive integer k.

(b) If p(x) = α0+ α1x + α2x2 + · · ·+ αkxk is any polynomial, then
we define p(A) to be the matrix

p(A) = α0I + α1A + α2A2 + · · · + αkAk.

Show that if (λ, x) is an eigenpair for A, then (p(λ), x) is an
eigenpair for p(A).



502 Chapter 7 Eigenvalues and Eigenvectors

7.1.11. Explain why (7.1.14) in Gerschgorin’s theorem on p. 498 implies that

A =

⎛

⎝
1 0 −2 0
0 12 0 −4
1 0 −1 0
0 5 0 0

⎞

⎠ must have at least two real eigenvalues. Cor-

roborate this fact by computing the eigenvalues of A.

7.1.12. If A is nilpotent ( Ak = 0 for some k ), explain why trace (A) = 0.
Hint: What is σ (A)?

7.1.13. If x1, x2, . . . ,xk are eigenvectors of A associated with the same eigen-
value λ, explain why every nonzero linear combination

v = α1x1 + α2x2 + · · · + αnxn

is also an eigenvector for A associated with the eigenvalue λ.

7.1.14. Explain why an eigenvector for a square matrix A cannot be associated
with two distinct eigenvalues for A.

7.1.15. Suppose σ (An× n) = σ (Bn× n) . Does this guarantee that A and B
have the same characteristic polynomial?

7.1.16. Construct 2×2 examples to prove the following statements.

(a) λ ∈ σ (A) and µ ∈ σ (B) ≠⇒ λ + µ ∈ σ (A + B) .

(b) λ ∈ σ (A) and µ ∈ σ (B) ≠⇒ λµ ∈ σ (AB) .

7.1.17. Suppose that {λ1, λ2, . . . , λn} are the eigenvalues for An× n, and let
(λk, c) be a particular eigenpair.

(a) For λ /∈ σ (A) , explain why (A− λI)− 1c = c/(λk − λ).

(b) For an arbitrary vector dn× 1, prove that the eigenvalues of
A + cdT agree with those of A except that λk is replaced by
λk + dT c.

(c) How can d be selected to guarantee that the eigenvalues of
A+cdT and A agree except that λk is replaced by a specified
number µ?
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7.1.18. Suppose that A is a square matrix.
(a) Explain why A and AT have the same eigenvalues.
(b) Explain why λ ∈ σ (A)⇐⇒ λ ∈ σ (A∗) .

Hint: Recall Exercise 6.1.8.
(c) Do these results imply that λ ∈ σ (A)⇐⇒ λ ∈ σ (A) when A

is a square matrix of real numbers?
(d) A nonzero row vector y∗ is called a left-hand eigenvector for

A whenever there is a scalar µ ∈ C such that y∗(A−µI) = 0.
Explain why µ must be an eigenvalue for A in the “right-hand”
sense of the term when A is a square matrix of real numbers.

7.1.19. Consider matrices Am× n and Bn× m.
(a) Explain why AB and BA have the same characteristic poly-

nomial if m = n. Hint: Recall Exercise 6.2.16.
(b) Explain why the characteristic polynomials for AB and BA

can’t be the same when m ̸= n, and then explain why σ (AB)
and σ (BA) agree, with the possible exception of a zero eigen-
value.

7.1.20. If AB = BA, prove that A and B have a common eigenvector.
Hint: For λ ∈ σ (A) , let the columns of X be a basis for N (A− λI)
so that (A − λI)BX = 0. Explain why there exists a matrix P such
that BX = XP, and then consider any eigenpair for P.

7.1.21. For fixed matrices Pm× m and Qn× n, let T be the linear operator on
Cm× n defined by T(A) = PAQ.

(a) Show that if x is a right-hand eigenvector for P and y∗ is a
left-hand eigenvector for Q, then xy∗ is an eigenvector for T.

(b) Explain why trace (T) = trace (P) trace (Q).

7.1.22. Let D = diag (λ1, λ2, . . . , λn) be a diagonal real matrix such that
λ1 < λ2 < · · · < λn, and let vn× 1 be a column of real nonzero numbers.

(a) Prove that if α is real and nonzero, then λi is not an eigenvalue
for D + αvvT . Show that the eigenvalues of D + αvvT are in
fact given by the solutions of the secular equation f(ξ) = 0
defined by

f(ξ) = 1 + α
n∑

i=1

v2
i

λi − ξ
.

For n = 4 and α > 0, verify that the graph of f(ξ) is as de-
picted in Figure 7.1.4, and thereby conclude that the eigenvalues
of D + αvvT interlace with those of D.
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ξ1 ξ2 ξ3 ξ4

λ1 λ2 λ3 λ4 λ4 + α

11

Figure 7.1.4

(b) Verify that (D − ξiI)
−1v is an eigenvector for D+ αvvT that

is associated with the eigenvalue ξi.

7.1.23. Newton’s Identities. Let λ1, . . . , λn be the roots of the polynomial
p(λ) = λn + c1λn−1 + c2λn−2 + · · ·+ cn, and let τk = λk

1 +λk
2 + · · ·+λk

n.
Newton’s identities say ck = −(τ1ck−1 + τ2ck−2 + · · · + τk−1c1 + τk)/k.
Derive these identities by executing the following steps:

(a) Show p′(λ) = p(λ)
∑n

i=1(λ−λi)−1 (logarithmic differentiation).
(b) Use the geometric series expansion for (λ − λi)

−1 to show that
for |λ| > maxi|λi|,

n∑

i=1

1
(λ − λi)

=
n

λ
+

τ1

λ2
+

τ2

λ3
+ · · · .

(c) Combine these two results, and equate like powers of λ.

7.1.24. Leverrier–Souriau–Frame Algorithm.69 Let the characteristic equa-
tion for A be given by λn + c1λn−1 + c2λn−2 + · · ·+ cn = 0, and define
a sequence by taking B0 = I and

Bk = − trace (ABk−1)
k

I + ABk−1 for k = 1, 2, . . . , n.

Prove that for each k,

ck = − trace (ABk−1)
k

.

Hint: Use Newton’s identities, and recall Exercise 7.1.10(a).

69
This algorithm has been rediscovered and modified several times. In 1840, the Frenchman U.
J. J. Leverrier provided the basic connection with Newton’s identities. J. M. Souriau, also from
France, and J. S. Frame, from Michigan State University, independently modified the algo-
rithm to its present form—Souriau’s formulation was published in France in 1948, and Frame’s
method appeared in the United States in 1949. Paul Horst (USA, 1935) along with Faddeev
and Sominskii (USSR, 1949) are also credited with rediscovering the technique. Although the
algorithm is intriguingly beautiful, it is not practical for floating-point computations.
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Solutions for exercises in section 7. 1

7.1.1. σ (A) = {−3, 4}

N (A + 3I) = span

{(
−1

1

)}
and N (A− 4I) = span

{(
−1/2

1

)}

σ (B) = {−2, 2} in which the algebraic multiplicity of λ = −2 is two.

N (B + 2I) = span

⎧
⎨

⎩

⎛

⎝
−4

1
0

⎞

⎠,

⎛

⎝
−2

0
1

⎞

⎠

⎫
⎬

⎭ and N (B− 2I) = span

⎧
⎨

⎩

⎛

⎝
−1/2
−1/2

1

⎞

⎠

⎫
⎬

⎭

σ (C) = {3} in which the algebraic multiplicity of λ = 3 is three.

N (C− 3I) = span

⎧
⎨

⎩

⎛

⎝
1
0
0

⎞

⎠

⎫
⎬

⎭

σ (D) = {3} in which the algebraic multiplicity of λ = 3 is three.

N (D− 3I) = span

⎧
⎨

⎩

⎛

⎝
2
1
0

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭

σ (E) = {3} in which the algebraic multiplicity of λ = 3 is three.

N (E− 3I) = span

⎧
⎨

⎩

⎛

⎝
1
0
0

⎞

⎠ ,

⎛

⎝
0
1
0

⎞

⎠ ,

⎛

⎝
0
0
1

⎞

⎠

⎫
⎬

⎭

Matrices C and D are deficient in eigenvectors.
7.1.2. Form the product Ax, and answer the question, “Is Ax some multiple of x ?”

When the answer is yes, then x is an eigenvector for A, and the multiplier
is the associated eigenvalue. For this matrix, (a), (c), and (d) are eigenvectors
associated with eigenvalues 1, 3, and 3, respectively.
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7.1.3. The characteristic polynomial for T is

det (T− λI) = (t11 − λ) (t22 − λ) · · · (tnn − λ) ,

so the roots are the tii ’s.
7.1.4. This follows directly from (6.1.16) because

det (T− λI) =
∣∣∣∣
A− λI B

0 C− λI

∣∣∣∣ = det (A− λI)det (C− λI).

7.1.5. If λi is not repeated, then N (A− λiI) = span {ei} . If the algebraic multiplic-
ity of λi is k, and if λi occupies positions i1, i2, . . . , ik in D, then

N (A− λiI) = span {ei1 , ei2 , . . . , eik} .

7.1.6. A singular ⇐⇒ det (A) = 0⇐⇒ 0 solves det (A− λI) = 0⇐⇒ 0 ∈ σ (A) .
7.1.7. Zero is not in or on any Gerschgorin circle. You could also say that A is non-

singular because it is diagonally dominant—see Example 7.1.6 on p. 499.
7.1.8. If (λ,x) is an eigenpair for A∗A, then ∥Ax∥22 / ∥x∥22 = x∗A∗Ax/x∗x = λ is

real and nonnegative. Furthermore, λ > 0 if and only if A∗A is nonsingular or,
equivalently, n = rank (A∗A) = rank (A). Similar arguments apply to AA∗.

7.1.9. (a) Ax = λx =⇒ x = λA−1x =⇒ (1/λ)x = A−1x.

(b) Ax = λx⇐⇒ (A− αI)x = (λ− α)x⇐⇒ (λ− α)−1x = (A− αI)−1x.
7.1.10. (a) Successively use A as a left-hand multiplier to produce

Ax = λx =⇒ A2x = λAx = λ2x

=⇒ A3x = λ2Ax = λ3x

=⇒ A4x = λ3Ax = λ4x
etc.

(b) Use part (a) to write

p(A)x =

(
∑

i

αiAi

)

x =
∑

i

αiAix =
∑

i

αiλ
ix =

(
∑

i

αiλ
i

)

x = p(λ)x.

7.1.11. Since one Geschgorin circle (derived from row sums and shown below) is isolated

2 4 6 8 10 12 14 16-2-4-6
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from the union of the other three circles, statement (7.1.14) on p. 498 insures
that there is one eigenvalue in the isolated circle and three eigenvalues in the
union of the other three. But, as discussed on p. 492, the eigenvalues of real
matrices occur in conjugate pairs. So, the root in the isolated circle must be real
and there must be at least one real root in the union of the other three circles.
Computation reveals that σ (A) = {± i, 2, 10}.

7.1.12. Use Exercise 7.1.10 to deduce that

λ ∈ σ (A) =⇒ λk ∈ σ
(
Ak
)

=⇒ λk = 0 =⇒ λ = 0.

Therefore, (7.1.7) insures that trace (A) =
∑

i λi = 0.
7.1.13. This is true because N (A− λI) is a subspace—recall that subspaces are closed

under vector addition and scalar multiplication.
7.1.14. If there exists a nonzero vector x that satisfies Ax = λ1x and Ax = λ2x,

where λ1 ̸= λ2, then

0 = Ax−Ax = λ1x− λ2x = (λ1 − λ2)x.

But this implies x = 0, which is impossible. Consequently, no such x can exist.

7.1.15. No—consider A =

⎛

⎝
1 0 0
0 1 0
0 0 2

⎞

⎠ and B =

⎛

⎝
1 0 0
0 2 0
0 0 2

⎞

⎠ .

7.1.16. Almost any example with rather random entries will do the job, but avoid diag-
onal or triangular matrices—they are too special.

7.1.17. (a) c = (A− λI)−1(A−λI)c = (A− λI)−1(Ac−λc) = (A− λI)−1(λk−λ)c.
(b) Use (6.2.3) to compute the characteristic polynomial for A + cdT to be

det
(
A + cdT − λI

)
= det

(
A− λI + cdT

)

= det (A− λI)
(
1 + dT (A− λI)−1c

)

=

(

±
n∏

i=1

(λj − λ)

)(
1 +

dT c
λk − λ

)

=

⎛

⎝±
∏

j ̸=k

(λj − λ)

⎞

⎠(λk + dT c− λ
)
.

The roots of this polynomial are λ1, . . . , λk−1, λk + dT c, λk+1, . . . , λn.

(c) d =
(µ− λk)c

cT c
will do the job.

7.1.18. (a) The transpose does not alter the determinant—recall (6.1.4)—so that

det (A− λI) = det
(
AT − λI

)
.



128 Solutions

(b) We know from Exercise 6.1.8 that det (A) = det (A∗), so

λ ∈ σ (A)⇐⇒ 0 = det (A− λI)

⇐⇒ 0 = det (A− λI) = det ((A− λI)∗) = det
(
A∗ − λI

)

⇐⇒ λ ∈ σ (A∗) .

(c) Yes.
(d) Apply the reverse order law for conjugate transposes to obtain

y∗A = µy∗ =⇒ A∗y = µy =⇒ AT y = µy =⇒ µ ∈ σ
(
AT
)

= σ (A) ,

and use the conclusion of part (c) insuring that the eigenvalues of real matrices
must occur in conjugate pairs.

7.1.19. (a) When m = n, Exercise 6.2.16 insures that

λndet (AB− λI) = λndet (BA− λI) for all λ,

so det (AB− λI) = det (BA− λI).
(b) If m ̸= n, then the characteristic polynomials of AB and BA are of
degrees m and n, respectively, so they must be different. When m and n are
different—say m > n —Exercise 6.2.16 implies that

det (AB− λI) = (−λ)m−ndet (BA− λI).

Consequently, AB has m− n more zero eigenvalues than BA.
7.1.20. Suppose that A and B are n × n, and suppose X is n × g. The equation

(A− λI)BX = 0 says that the columns of BX are in N (A− λI), and hence
they are linear combinations of the basis vectors in X. Thus

[BX]∗j =
∑

i

pijX∗j =⇒ BX = XP, where Pg×g = [pij ] .

If (µ, z) is any eigenpair for P, then

B(Xz) = XPz = µ(Xz) and AX = λX =⇒ A(Xz) = λ(Xz),

so Xz is a common eigenvector.
7.1.21. (a) If Px = λx and y∗Q = µy∗, then T(xy∗) = Pxy∗Q = λµxy∗.

(b) Since dim Cm×n = mn, the operator T (as well as any coordinate ma-
trix representation of T ) must have exactly mn eigenvalues (counting mul-
tiplicities), and since there are exactly mn products λµ, where λ ∈ σ (P) ,
µ ∈ σ (Q) , it follows that σ (T) = {λµ |λ ∈ σ (P) , µ ∈ σ (Q)}. Use the fact
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that the trace is the sum of the eigenvalues (recall (7.1.7)) to conclude that
trace (T) =

∑

i,j λiµj =
∑

i λi
∑

j µj = trace (P) trace (Q).
7.1.22. (a) Use (6.2.3) to compute the characteristic polynomial for D + αvvT to be

p(λ) = det
(

D + αvvT − λI
)

= det
(

D − λI + αvvT
)

= det (D − λI)
(

1 + αvT (D − λI)−1v
)

(‡)

=

⎛

⎝

n
∏

j=1

(λ − λj)

⎞

⎠

(

1 + α
n
∑

i=1

v2
i

λi − λ

)

=
n
∏

j=1

(λ − λj) + α
n
∑

i=1

⎛

⎝ vi

∏

j ̸=i

(λ − λj)

⎞

⎠.

For each λk, it is true that

p(λk) = αvk

∏

j ̸=k

(λk − λj) ≠ 0,

and hence no λk can be an eigenvalue for D + αvvT . Consequently, if ξ is an
eigenvalue for D + αvvT , then det (D − ξI) ≠ 0, so p(ξ) = 0 and (‡) imply
that

0 = 1 + αvT (D − ξI)−1v = 1 + α
n
∑

i=1

v2
i

λi − ξ
= f(ξ).

(b) Use the fact that f(ξi) = 1 + αvT (D − ξiI)
−1v = 0 to write

(

D + αvvT
)

(D − ξiI)
−1v = D(D − ξiI)

−1v + v
(

αvT (D − ξiI)
−1v

)

= D(D − ξiI)
−1v − v

=
(

D − (D − ξiI)
)

(D − ξiI)
−1v

= ξi(D − ξiI)
−1v.

7.1.23. (a) If p(λ) = (λ − λ1) (λ − λ2) · · · (λ − λn) , then

ln p(λ) =
n
∑

i=1

ln (λ − λi) =⇒ p′(λ)
p(λ)

=
n
∑

i=1

1
(λ − λi)

.

(b) If |λi/λ| < 1, then we can write

(λ − λi)
−1 =

(

λ

(

1 − λi

λ

))−1

=
1
λ

(

1 − λi

λ

)−1

=
1
λ

(

1 +
λi

λ
+

λ2
i

λ2
+ · · ·

)

.
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Consequently,

n∑

i=1

1
(λ− λi)

=
n∑

i=1

(
1
λ

+
λi

λ2
+

λ2
i

λ3
+ · · ·

)
=

n

λ
+

τ1

λ2
+

τ2

λ3
+ · · · .

(c) Combining these two results yields

nλn−1 + (n− 1)c1λ
n−2 + (n− 2)c2λ

n−3 + · · · + cn−1

=
(
λn + c1λ

n−1 + c2λ
n−2 + · · · + cn

) (n

λ
+

τ1

λ2
+

τ2

λ3
+ · · ·

)

= nλn−1 + (nc1 + τ1)λn−2 + (nc2 + τ1c1 + τ2) λn−3

+ · · · + (ncn−1 + τ1cn−2 + τ2cn−3 + · · · + τn−1)

+ (ncn + τ1cn−1 + τ2cn−2 · · · + τn)
1
λ

+ · · · ,

and equating like powers of λ produces the desired conclusion.
7.1.24. We know from Exercise 7.1.10 that λ ∈ σ (A) =⇒ λk ∈ σ

(
Ak
)
, so (7.1.7)

guarantees that trace
(
Ak
)

=
∑

i λk
i = τk. Proceed by induction. The result is

true for k = 1 because (7.1.7) says that c1 = −trace (A). Assume that

ci = − trace (ABi−1)
i

for i = 1, 2, . . . , k − 1,

and prove the result holds for i = k. Recursive application of the induction
hypothesis produces

B1 = c1I + A

B2 = c2I + c1A + A2

...

Bk−1 = ck−1I + ck−2A + · · · + c1Ak−2 + Ak−1,

and therefore we can use Newton’s identities given in Exercise 7.1.23 to obtain

trace (ABk−1) = trace
(
ck−1A + ck−2A2 + · · · + c1Ak−1 + Ak

)

= ck−1τ1 + ck−2τ2 + · · · + c1τk−1 + τk

= −kck.


