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7.2 DIAGONALIZATION BY SIMILARITY TRANSFORMATIONS

The correct choice of a coordinate system (or basis) often can simplify the form
of an equation or the analysis of a particular problem. For example, consider the
obliquely oriented ellipse in Figure 7.2.1 whose equation in the xy -coordinate
system is

13x2 + 10xy + 13y2 = 72.

By rotating the xy -coordinate system counterclockwise through an angle of 45◦

x

y

uv

Figure 7.2.1

into a uv -coordinate system by means of (5.6.13) on p. 326, the cross-product
term is eliminated, and the equation of the ellipse simplifies to become

u2

9
+

v2

4
= 1.

It’s shown in Example 7.6.3 on p. 567 that we can do a similar thing for quadratic
equations in ℜn.

Choosing or changing to the most appropriate coordinate system (or basis)
is always desirable, but in linear algebra it is fundamental. For a linear operator
L on a finite-dimensional space V, the goal is to find a basis B for V such
that the matrix representation of L with respect to B is as simple as possible.
Since different matrix representations A and B of L are related by a similarity
transformation P− 1AP = B (recall §4.8),70 the fundamental problem for linear
operators is strictly a matrix issue—i.e., find a nonsingular matrix P such that
P− 1AP is as simple as possible. The concept of similarity was first introduced
on p. 255, but in the interest of continuity it is reviewed below.

70
While it is helpful to have covered the topics in §§4.7–4.9, much of the subsequent development
is accessible without an understanding of this material.
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Similarity
• Two n × n matrices A and B are said to be similar whenever

there exists a nonsingular matrix P such that P− 1AP = B. The
product P− 1AP is called a similarity transformation on A.

• A Fundamental Problem. Given a square matrix A, reduce it to
the simplest possible form by means of a similarity transformation.

Diagonal matrices have the simplest form, so we first ask, “Is every square
matrix similar to a diagonal matrix?” Linear algebra and matrix theory would
be simpler subjects if this were true, but it’s not. For example, consider

A =
(

0 1
0 0

)
, (7.2.1)

and observe that A2 = 0 ( A is nilpotent). If there exists a nonsingular matrix
P such that P− 1AP = D, where D is diagonal, then

D2 = P− 1APP− 1AP = P− 1A2P = 0 =⇒ D = 0 =⇒ A = 0,

which is false. Thus A, as well as any other nonzero nilpotent matrix, is not sim-
ilar to a diagonal matrix. Nonzero nilpotent matrices are not the only ones that
can’t be diagonalized, but, as we will see, nilpotent matrices play a particularly
important role in nondiagonalizability.

So, if not all square matrices can be diagonalized by a similarity transforma-
tion, what are the characteristics of those that can? An answer is easily derived
by examining the equation

P− 1An× nP = D =

⎛

⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

⎞

⎟⎟⎠,

which implies A [P∗1 | · · · |P∗n] = [P∗1 | · · · |P∗n]

⎛

⎝
λ1 · · · 0
...

. . .
...

0 · · · λn

⎞

⎠ or, equiva-

lently, [AP∗1 | · · · |AP∗n] = [λ1P∗1 | · · · |λnP∗n] . Consequently, AP∗j = λjP∗j

for each j, so each (λj ,P∗j) is an eigenpair for A. In other words, P− 1AP = D
implies that P must be a matrix whose columns constitute n linearly indepen-
dent eigenvectors, and D is a diagonal matrix whose diagonal entries are the
corresponding eigenvalues. It’s straightforward to reverse the above argument to
prove the converse—i.e., if there exists a linearly independent set of n eigenvec-
tors that are used as columns to build a nonsingular matrix P, and if D is the
diagonal matrix whose diagonal entries are the corresponding eigenvalues, then
P− 1AP = D. Below is a summary.
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Diagonalizability
• A square matrix A is said to be diagonalizable whenever A is

similar to a diagonal matrix.
• A complete set of eigenvectors for An× n is any set of n lin-

early independent eigenvectors for A. Not all matrices have com-
plete sets of eigenvectors—e.g., consider (7.2.1) or Example 7.1.2.
Matrices that fail to possess complete sets of eigenvectors are some-
times called deficient or defective matrices.

• An× n is diagonalizable if and only if A possesses a complete set of
eigenvectors. Moreover, P− 1AP = diag (λ1, λ2, . . . , λn) if and only
if the columns of P constitute a complete set of eigenvectors and
the λj ’s are the associated eigenvalues—i.e., each (λj ,P∗j) is an
eigenpair for A.

Example 7.2.1
Problem: If possible, diagonalize the following matrix with a similarity trans-
formation:

A =

⎛

⎝
1 −4 −4
8 −11 −8
−8 8 5

⎞

⎠ .

Solution: Determine whether or not A has a complete set of three linearly
independent eigenvectors. The characteristic equation—perhaps computed by
using (7.1.5)—is

λ3 + 5λ2 + 3λ−9 = (λ−1)(λ + 3)2 = 0.

Therefore, λ = 1 is a simple eigenvalue, and λ = −3 is repeated twice (we
say its algebraic multiplicity is 2). Bases for the eigenspaces N (A−1I) and
N (A + 3I) are determined in the usual way to be

N (A−1I) = span

⎧
⎨

⎩

⎛

⎝
1
2
−2

⎞

⎠

⎫
⎬

⎭
and N (A + 3I) = span

⎧
⎨

⎩

⎛

⎝
1
1
0

⎞

⎠ ,

⎛

⎝
1
0
1

⎞

⎠

⎫
⎬

⎭
,

and it’s easy to check that when combined these three eigenvectors constitute a
linearly independent set. Consequently, A must be diagonalizable. To explicitly
exhibit the similarity transformation that diagonalizes A, set

P =

⎛

⎝
1 1 1
2 1 0
−2 0 1

⎞

⎠ , and verify P− 1AP =

⎛

⎝
1 0 0
0 −3 0
0 0 −3

⎞

⎠ = D.
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Since not all square matrices are diagonalizable, it’s natural to inquire about
the next best thing—i.e., can every square matrix be triangularized by similarity?
This time the answer is yes, but before explaining why, we need to make the
following observation.

Similarity Preserves Eigenvalues
Row reductions don’t preserve eigenvalues (try a simple example). How-
ever, similar matrices have the same characteristic polynomial, so they
have the same eigenvalues with the same multiplicities. Caution! Sim-
ilar matrices need not have the same eigenvectors—see Exercise 7.2.3.

Proof. Use the product rule for determinants in conjunction with the fact that
det
(
P− 1

)
= 1/det (P) (Exercise 6.1.6) to write

det (A−λI) = det
(
P− 1BP−λI

)
= det

(
P− 1(B−λI)P

)

= det
(
P− 1

)
det (B−λI)det (P) = det (B−λI).

In the context of linear operators, this means that the eigenvalues of a matrix
representation of an operator L are invariant under a change of basis. In other
words, the eigenvalues are intrinsic to L in the sense that they are independent
of any coordinate representation.

Now we can establish the fact that every square matrix can be triangularized
by a similarity transformation. In fact, as Issai Schur (p. 123) realized in 1909,
the similarity transformation always can be made to be unitary.

Schur’s Triangularization Theorem
Every square matrix is unitarily similar to an upper-triangular matrix.
That is, for each An× n, there exists a unitary matrix U (not unique)
and an upper-triangular matrix T (not unique) such that U∗AU = T,
and the diagonal entries of T are the eigenvalues of A.

Proof. Use induction on n, the size of the matrix. For n = 1, there is nothing
to prove. For n > 1, assume that all n−1 × n−1 matrices are unitarily similar
to an upper-triangular matrix, and consider an n × n matrix A. Suppose that
(λ,x) is an eigenpair for A, and suppose that x has been normalized so that
∥x∥2 = 1. As discussed on p. 325, we can construct an elementary reflector
R = R∗ = R− 1 with the property that Rx = e1 or, equivalently, x = Re1

(set R = I if x = e1). Thus x is the first column in R, so R =
(
x |V

)
, and

RAR = RA
(
x |V

)
= R

(
λx |AV

)
=
(
λe1 |RAV

)
=
(

λ x∗AV
0 V∗AV

)
.
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Since V∗AV is n−1 × n−1, the induction hypothesis insures that there exists
a unitary matrix Q such that Q∗(V∗AV)Q = T̃ is upper triangular. If U =
R
(

1 0
0 Q

)
, then U is unitary (because U∗ = U− 1), and

U∗AU =
(

λ x∗AVQ
0 Q∗V∗AVQ

)
=
(

λ x∗AVQ
0 T̃

)
= T

is upper triangular. Since similar matrices have the same eigenvalues, and since
the eigenvalues of a triangular matrix are its diagonal entries (Exercise 7.1.3),
the diagonal entries of T must be the eigenvalues of A.

Example 7.2.2
The Cayley–Hamilton 71 theorem asserts that every square matrix satisfies
its own characteristic equation p(λ) = 0. That is, p(A) = 0.

Problem: Show how the Cayley–Hamilton theorem follows from Schur’s trian-
gularization theorem.

Solution: Schur’s theorem insures the existence of a unitary U such that
U∗AU = T is triangular, and the development allows for the eigenvalues A to
appear in any given order on the diagonal of T. So, if σ (A) = {λ1, λ2, . . . , λk}
with λi repeated ai times, then there is a unitary U such that

U∗AU=T=

⎛

⎜⎜⎝

T1 ⋆ · · · ⋆
T2 · · · ⋆

. . .
...

Tk

⎞

⎟⎟⎠, where Ti =

⎛

⎜⎜⎝

λi ⋆ · · · ⋆
λi · · · ⋆

. . .
...
λi

⎞

⎟⎟⎠

ai× ai

.

Consequently, (Ti−λiI)ai = 0, so (T−λiI)ai has the form

(T−λiI)ai =

⎛

⎜⎜⎜⎜⎜⎝

⋆ · · · ⋆ · · · ⋆
. . .

...
...

0 · · · ⋆
. . .

...
⋆

⎞

⎟⎟⎟⎟⎟⎠
←−ith row of blocks.

71
William Rowan Hamilton (1805–1865), an Irish mathematical astronomer, established this

result in 1853 for his quaternions, matrices of the form

(
a + bi c + di
−c + di a − bi

)
that resulted

from his attempt to generalize complex numbers. In 1858 Arthur Cayley (p. 80) enunciated
the general result, but his argument was simply to make direct computations for 2 × 2 and
3 × 3 matrices. Cayley apparently didn’t appreciate the subtleties of the result because he
stated that a formal proof “was not necessary.” Hamilton’s quaternions took shape in his mind
while walking with his wife along the Royal Canal in Dublin, and he was so inspired that he
stopped to carve his idea in the stone of the Brougham Bridge. He believed quaternions would
revolutionize mathematical physics, and he spent the rest of his life working on them. But the
world did not agree. Hamilton became an unhappy man addicted to alcohol who is reported
to have died from a severe attack of gout.
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This form insures that (T−λ1I)a1(T−λ2I)a2 · · · (T−λkI)ak = 0. The charac-
teristic equation for A is p(λ) = (λ − λ1)a1(λ − λ2)a2 · · · (λ − λk)ak = 0, so

U∗p(A)U = U∗(A − λ1I)a1(A − λ2I)a2 · · · (A − λkI)akU
= (T − λ1I)a1(T − λ2I)a2 · · · (T − λkI)ak = 0,

and thus p(A) = 0. Note: A completely different approach to the Cayley–
Hamilton theorem is discussed on p. 532.

Schur’s theorem is not the complete story on triangularizing by similarity.
By allowing nonunitary similarity transformations, the structure of the upper-
triangular matrix T can be simplified to contain zeros everywhere except on
the diagonal and the superdiagonal (the diagonal immediately above the main
diagonal). This is the Jordan form developed on p. 590, but some of the seeds
are sown here.

Multiplicities
For λ ∈ σ (A) = {λ1, λ2, . . . , λs} , we adopt the following definitions.

• The algebraic multiplicity of λ is the number of times it is re-
peated as a root of the characteristic polynomial. In other words,
alg multA (λi) = ai if and only if (x − λ1)a1 · · · (x − λs)as = 0 is
the characteristic equation for A.

• When alg multA (λ) = 1, λ is called a simple eigenvalue.

• The geometric multiplicity of λ is dim N (A − λI). In other
words, geo multA (λ) is the maximal number of linearly independent
eigenvectors associated with λ.

• Eigenvalues such that alg multA (λ) = geo multA (λ) are called
semisimple eigenvalues of A. It follows from (7.2.2) on p. 511
that a simple eigenvalue is always semisimple, but not conversely.

Example 7.2.3
The algebraic and geometric multiplicity need not agree. For example, the nilpo-
tent matrix A =

(

0 1
0 0

)

in (7.2.1) has only one distinct eigenvalue, λ = 0,

that is repeated twice, so alg multA (0) = 2. But

dimN (A − 0I) = dimN (A) = 1 =⇒ geo multA (0) = 1.

In other words, there is only one linearly independent eigenvector associated with
λ = 0 even though λ = 0 is repeated twice as an eigenvalue.

Example 7.2.3 shows that geo multA (λ) < alg multA (λ) is possible. How-
ever, the inequality can never go in the reverse direction.
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Multiplicity Inequality
For every A ∈ Cn× n, and for each λ ∈ σ(A),

geo multA (λ) ≤ alg multA (λ) . (7.2.2)

Proof. Suppose alg multA (λ) = k. Schur’s triangularization theorem (p. 508)
insures the existence of a unitary U such that U∗An× nU =

(
T11 T12
0 T22

)
,

where T11 is a k × k upper-triangular matrix whose diagonal entries are equal
to λ, and T22 is an n−k × n−k upper-triangular matrix with λ /∈ σ (T22) .
Consequently, T22−λI is nonsingular, so

rank (A−λI) = rank (U∗(A−λI)U) = rank

(
T11−λI T12

0 T22−λI

)

≥ rank (T22−λI) = n−k.

The inequality follows from the fact that the rank of a matrix is at least as great
as the rank of any submatrix—recall the result on p. 215. Therefore,

alg multA (λ) = k ≥ n−rank (A−λI) = dimN (A−λI) = geo multA (λ) .

Determining whether or not An× n is diagonalizable is equivalent to deter-
mining whether or not A has a complete linearly independent set of eigenvectors,
and this can be done if you are willing and able to compute all of the eigenvalues
and eigenvectors for A. But this brute force approach can be a monumental
task. Fortunately, there are some theoretical tools to help determine how many
linearly independent eigenvectors a given matrix possesses.

Independent Eigenvectors
Let {λ1, λ2, . . . , λk} be a set of distinct eigenvalues for A.

• If {(λ1,x1), (λ2,x2), . . . , (λk,xk)} is a set of eigenpairs for
A, then S = {x1,x2, . . . ,xk} is a linearly independent set. (7.2.3)

• If Bi is a basis for N (A−λiI), then B = B1∪B2∪· · ·∪Bk

is a linearly independent set. (7.2.4)
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Proof of (7.2.3). Suppose S is a dependent set. If the vectors in S are arranged
so that M = {x1,x2, . . . ,xr} is a maximal linearly independent subset, then

xr+1 =
r∑

i=1

αixi,

and multiplication on the left by A−λr+1I produces

0 =
r∑

i=1

αi (Axi−λr+1xi) =
r∑

i=1

αi (λi−λr+1)xi.

Because M is linearly independent, αi (λi−λr+1) = 0 for each i. Conse-
quently, αi = 0 for each i (because the eigenvalues are distinct), and hence
xr+1 = 0. But this is impossible because eigenvectors are nonzero. Therefore,
the supposition that S is a dependent set must be false.

Proof of (7.2.4). The result of Exercise 5.9.14 guarantees that B is linearly
independent if and only if

Mj = N (A−λjI) ∩
[
N (A−λ1I) + N (A−λ2I) + · · · + N (A−λj− 1I)

]
= 0

for each j = 1, 2, . . . , k. Suppose we have 0 ̸= x ∈ Mj for some j. Then
Ax = λjx and x = v1 + v2 + · · · + vj− 1 for vi ∈ N (A−λiI), which implies

j− 1∑

i=1

(λi−λj)vi =
j− 1∑

i=1

λivi−λj

j− 1∑

i=1

vi = Ax−λjx = 0.

By (7.2.3), the vi ’s are linearly independent, and hence λi−λj = 0 for each
i = 1, 2, . . . , j −1. But this is impossible because the eigenvalues are distinct.
Therefore, Mj = 0 for each j, and thus B is linearly independent.

These results lead to the following characterization of diagonalizability.

Diagonalizability and Multiplicities
A matrix An× n is diagonalizable if and only if

geo multA (λ) = alg multA (λ) (7.2.5)

for each λ ∈ σ(A) —i.e., if and only if every eigenvalue is semisimple.
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Proof. Suppose geo multA (λi) = alg multA (λi) = ai for each eigenvalue λi.
If there are k distinct eigenvalues, and if Bi is a basis for N (A−λiI), then
B = B1 ∪B2 ∪ · · ·∪Bk contains

∑k
i=1 ai = n vectors. We just proved in (7.2.4)

that B is a linearly independent set, so B represents a complete set of linearly
independent eigenvectors of A, and we know this insures that A must be
diagonalizable. Conversely, if A is diagonalizable, and if λ is an eigenvalue for
A with alg multA (λ) = a, then there is a nonsingular matrix P such that

P− 1AP = D =
(

λIa× a 0
0 B

)
,

where λ /∈ σ(B). Consequently,

rank (A−λI) = rank P
(

0 0
0 B−λI

)
P− 1 = rank (B−λI) = n−a,

and thus

geo multA (λ) = dimN (A−λI) = n−rank (A−λI) = a = alg multA (λ) .

Example 7.2.4
Problem: Determine if either of the following matrices is diagonalizable:

A =

⎛

⎝
−1 −1 −2

8 −11 −8
−10 11 7

⎞

⎠ , B =

⎛

⎝
1 −4 −4
8 −11 −8
−8 8 5

⎞

⎠ .

Solution: Each matrix has exactly the same characteristic equation

λ3 + 5λ2 + 3λ−9 = (λ−1)(λ + 3)2 = 0,

so σ (A) = {1, −3} = σ (B) , where λ = 1 has algebraic multiplicity 1 and
λ =−3 has algebraic multiplicity 2. Since

geo multA (−3) = dimN (A + 3I) = 1 < alg multA (−3) ,

A is not diagonalizable. On the other hand,

geo multB (−3) = dimN (B + 3I) = 2 = alg multB (−3) ,

and geo multB (1) = 1 = alg multB (1) , so B is diagonalizable.

If An× n happens to have n distinct eigenvalues, then each eigenvalue is
simple. This means that geo multA (λ) = alg multA (λ) = 1 for each λ, so
(7.2.5) produces the following corollary guaranteeing diagonalizability.
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Distinct Eigenvalues
If no eigenvalue of A is repeated, then A is diagonalizable. (7.2.6)
Caution! The converse is not true—see Example 7.2.4.

Example 7.2.5
Toeplitz72 matrices have constant entries on each diagonal parallel to the main
diagonal. For example, a 4 × 4 Toeplitz matrix T along with a tridiagonal
Toeplitz matrix A are shown below:

T =

⎛

⎜⎝

t0 t1 t2 t3
t− 1 t0 t1 t2
t− 2 t− 1 t0 t1
t− 3 t− 2 t− 1 t0

⎞

⎟⎠ , A =

⎛

⎜⎝

t0 t1 0 0
t− 1 t0 t1 0
0 t− 1 t0 t1
0 0 t− 1 t0

⎞

⎟⎠ .

Toeplitz structures occur naturally in a variety of applications, and tridiago-
nal Toeplitz matrices are commonly the result of discretizing differential equa-
tion problems—e.g., see §1.4 (p. 18) and Example 7.6.1 (p. 559). The Toeplitz
structure is rich in special properties, but tridiagonal Toeplitz matrices are par-
ticularly nice because they are among the few nontrivial structures that admit
formulas for their eigenvalues and eigenvectors.

Problem: Show that the eigenvalues and eigenvectors of

A =

⎛

⎜⎜⎜⎜⎝

b a
c b a

. . . . . . . . .
c b a

c b

⎞

⎟⎟⎟⎟⎠

n× n

with a ̸= 0 ̸= c

are given by

λj = b + 2a
√

c/a cos
(

jπ

n + 1

)
and xj =

⎛

⎜⎜⎜⎜⎝

(c/a)1/2 sin (1jπ/(n + 1))
(c/a)2/2 sin (2jπ/(n + 1))
(c/a)3/2 sin (3jπ/(n + 1))

...
(c/a)n/2 sin (njπ/(n + 1))

⎞

⎟⎟⎟⎟⎠

72
Otto Toeplitz (1881–1940) was a professor in Bonn, Germany, but because of his Jewish back-
ground he was dismissed from his chair by the Nazis in 1933. In addition to the matrix that
bears his name, Toeplitz is known for his general theory of infinite-dimensional spaces devel-
oped in the 1930s.
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for j = 1, 2, . . . , n, and conclude that A is diagonalizable.

Solution: For an eigenpair (λ,x), the components in (A−λI)x = 0 are
cxk− 1+(b−λ)xk+axk+1 = 0, k = 1, . . . , n with x0 = xn+1 = 0 or, equivalently,

xk+2+
(

b−λ

a

)
xk+1+

( c

a

)
xk = 0 for k = 0, . . . , n−1 with x0 = xn+1 = 0.

These are second-order homogeneous difference equations, and solving them is
similar to solving analogous differential equations. The technique is to seek solu-
tions of the form xk = ξrk for constants ξ and r. This produces the quadratic
equation r2 + (b−λ)r/a + c/a = 0 with roots r1 and r2, and it can be argued
that the general solution of xk+2 + ((b−λ)/a)xk+1 + (c/a)xk = 0 is

xk =
{

αrk
1 + βrk

2 if r1 ̸= r2,

αρk + βkρk if r1 = r2 = ρ,
where α and β are arbitrary constants.

For the eigenvalue problem at hand, r1 and r2 must be distinct—otherwise
xk = αρk +βkρk, and x0 = xn+1 = 0 implies each xk = 0, which is impossible
because x is an eigenvector. Hence xk = αrk

1 +βrk
2 , and x0 = xn+1 = 0 yields

{
0 = α + β
0 = αrn+1

1 + βrn+1
2

}
=⇒

(
r1

r2

)n+1

=
−β

α
= 1 =⇒ r1

r2
= ei2πj/(n+1),

so r1 = r2ei2πj/(n+1) for some 1 ≤ j ≤ n. Couple this with

r2 +
(b−λ)r

a
+

c

a
= (r−r1)(r−r2) =⇒

{
r1r2 = c/a
r1 + r2 =−(b−λ)/a

to conclude that r1 =
√

c/a eiπj/(n+1), r2 =
√

c/a e− iπj/(n+1), and

λ = b + a
√

c/a
(
eiπj/(n+1) + e− iπj/(n+1)

)
= b + 2a

√
c/a cos

(
jπ

n + 1

)
.

Therefore, the eigenvalues of A must be given by

λj = b + 2a
√

c/a cos
(

jπ

n + 1

)
, j = 1, 2, . . . , n.

Since these λj ’s are all distinct (cos θ is a strictly decreasing function of θ on
(0, π), and a ̸= 0 ̸= c), A must be diagonalizable—recall (7.2.6). Finally, the
kth component of any eigenvector associated with λj satisfies xk = αrk

1 + βrk
2

with α + β = 0, so

xk = α
( c

a

)k/2(
eiπjk/(n+1)−e− iπjk/(n+1)

)
= 2iα

( c

a

)k/2
sin
(

jkπ

n + 1

)
.
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Setting α = 1/2i yields a particular eigenvector associated with λj as

xj =

⎛

⎜⎜⎜⎜⎝

(c/a)1/2 sin (1jπ/(n + 1))
(c/a)2/2 sin (2jπ/(n + 1))
(c/a)3/2 sin (3jπ/(n + 1))

...
(c/a)n/2 sin (njπ/(n + 1))

⎞

⎟⎟⎟⎟⎠
.

Because the λj ’s are distinct, {x1,x2, . . . ,xn} is a complete linearly indepen-
dent set—recall (7.2.3)—so P =

(
x1 |x2 | · · · |xn

)
diagonalizes A.

It’s often the case that a right-hand and left-hand eigenvector for some
eigenvalue is known. Rather than starting from scratch to find additional eigen-
pairs, the known information can be used to reduce or “deflate” the problem to
a smaller one as described in the following example.

Example 7.2.6
Deflation. Suppose that right-hand and left-hand eigenvectors x and y∗ for an
eigenvalue λ of A ∈ ℜn× n are already known, so Ax = λx and y∗A = λy∗.
Furthermore, suppose y∗x ̸= 0 —such eigenvectors are guaranteed to exist if λ
is simple or if A is diagonalizable (Exercises 7.2.23 and 7.2.22).

Problem: Use x and y∗ to deflate the size of the remaining eigenvalue problem.

Solution: Scale x and y∗ so that y∗x = 1, and construct Xn× n− 1 so that its
columns are an orthonormal basis for y⊥ . An easy way of doing this is to build
a reflector R =

[
ỹ |X

]
having ỹ = y/ ∥y∥2 as its first column as described on

p. 325. If P =
[
x |X

]
, then straightforward multiplication shows that

P− 1 =
(

y∗

X∗(I−xy∗)

)
and P− 1AP =

(
λ 0
0 B

)
,

where B = X∗AX is n−1 × n−1. The eigenvalues of B constitute the re-
maining eigenvalues of A (Exercise 7.1.4), and thus an n × n eigenvalue prob-
lem is deflated to become one of size n−1 × n−1.

Note: When A is symmetric, we can take x = y to be an eigenvector with
∥x∥2 = 1, so P = R = R− 1, and RAR =

(
λ 0
0 B

)
in which B = BT .

An elegant and more geometrical way of expressing diagonalizability is now
presented to help simplify subsequent analyses and pave the way for extensions.
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Spectral Theorem for Diagonalizable Matrices
A matrix An× n with spectrum σ(A) = {λ1, λ2, . . . , λk} is diagonaliz-
able if and only if there exist matrices {G1,G2, . . . ,Gk} such that

A = λ1G1 + λ2G2 + · · · + λkGk, (7.2.7)

where the Gi ’s have the following properties.
• Gi is the projector onto N (A−λiI) along R (A−λiI). (7.2.8)
• GiGj = 0 whenever i ̸= j. (7.2.9)
• G1 + G2 + · · · + Gk = I. (7.2.10)
The expansion (7.2.7) is known as the spectral decomposition of A,
and the Gi ’s are called the spectral projectors associated with A.

Proof. If A is diagonalizable, and if Xi is a matrix whose columns form a
basis for N (A−λiI), then P =

(
X1 |X2 | · · · |Xk

)
is nonsingular. If P− 1 is

partitioned in a conformable manner, then we must have

A = PDP− 1 =
(
X1 |X2 | · · · |Xk

)
⎛

⎜⎜⎝

λ1I 0 · · · 0
0 λ2I · · · 0
...

...
. . .

...
0 0 · · · λkI

⎞

⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

YT
1

YT
2

...

YT
k

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

= λ1X1YT
1 + λ2X2YT

2 + · · · + λkXkYT
k

= λ1G1 + λ2G2 + · · · + λkGk.

(7.2.11)

For Gi = XiYT
i , the statement PP− 1 = I translates to

∑k
i=1 Gi = I, and

P− 1P = I =⇒ YT
i Xj =

{
I when i = j,
0 when i ̸= j,

=⇒
{

G2
i = Gi,

GiGj = 0 when i ̸= j.

To establish that R (Gi) = N (A−λiI), use R (AB) ⊆ R (A) (Exercise 4.2.12)
and YT

i Xi = I to write

R (Gi) = R(XiYT
i ) ⊆ R (Xi) = R(XiYT

i Xi) = R(GiXi) ⊆ R (Gi).

Thus R (Gi) = R (Xi) = N (A−λiI). To show N (Gi) = R (A−λiI), use
A =

∑k
j=1 λjGj with the already established properties of the Gi ’s to conclude

Gi(A−λiI) = Gi

⎛

⎝
k∑

j=1

λjGj −λi

k∑

j=1

Gj

⎞

⎠ = 0 =⇒ R (A−λiI) ⊆ N (Gi).
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But we already know that N (A−λiI) = R (Gi), so

dimR (A−λiI) = n−dimN (A−λiI) = n−dimR (Gi) = dimN (Gi),

and therefore, by (4.4.6), R (A−λiI) = N (Gi). Conversely, if there exist ma-
trices Gi satisfying (7.2.8)–(7.2.10), then A must be diagonalizable. To see
this, note that (7.2.8) insures dimR (Gi) = dimN (A−λiI) = geo multA (λi) ,

while (7.2.9) implies R (Gi) ∩ R (Gj) = 0 and R
(∑k

i=1 Gi

)
=
∑k

i=1 R (Gi)
(Exercise 5.9.17). Use these with (7.2.10) in the formula for the dimension of a
sum (4.4.19) to write

n = dimR (I) = dimR (G1 + G2 + · · · + Gk)
= dim [R (G1) + R (G2) + · · · + R (Gk)]
= dimR (G1) + dimR (G2) + · · · + dimR (Gk)
= geo multA (λ1) + geo multA (λ2) + · · · + geo multA (λk) .

Since geo multA (λi) ≤ alg multA (λi) and
∑k

i=1 alg multA (λi) = n, the above
equation insures that geo multA (λi) = alg multA (λi) for each i, and, by
(7.2.5), this means A is diagonalizable.

Simple Eigenvalues and Projectors
If x and y∗ are respective right-hand and left-hand eigenvectors asso-
ciated with a simple eigenvalue λ ∈ σ (A) , then

G = xy∗/y∗x (7.2.12)

is the projector onto N (A−λI) along R (A−λI). In the context
of the spectral theorem (p. 517), this means that G is the spectral
projector associated with λ.

Proof. It’s not difficult to prove y∗x ̸= 0 (Exercise 7.2.23), and it’s clear that
G is a projector because G2 = x(y∗x)y∗/(y∗x)2 = G. Now determine R (G).
The image of any z is Gz = αx with α = y∗z/y∗x, so

R (G) ⊆ span {x} = N (A−λI) and dimR (G) = 1 = dimN (A−λI).

Thus R (G) = N (A−λI). To find N (G), recall N (G) = R (I−G) (see
(5.9.11), p. 386), and observe that y∗(A−λI) = 0 =⇒ y∗(I−G) = 0, so

R (A−λI)⊥ ⊆ R (I−G)⊥ = N (G)⊥ =⇒N (G) ⊆ R (A−λI) (Exercise 5.11.5).

But dimN (G) = n−dimR (G) =n−1 =n−dimN (A−λI) = dimR (A−λI),
so N (G) = R (A−λI).
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Example 7.2.7

Problem: Determine the spectral projectors for A =
(

1 −4 −4
8 −11 −8

−8 8 5

)
.

Solution: This is the diagonalizable matrix from Example 7.2.1 (p. 507). Since
there are two distinct eigenvalues, λ1 = 1 and λ2 =−3, there are two spectral
projectors,

G1 = the projector onto N (A−1I) along R (A−1I),
G2 = the projector onto N (A + 3I) along R (A + 3I).

There are several different ways to find these projectors.
1. Compute bases for the necessary nullspaces and ranges, and use (5.9.12).
2. Compute Gi = XiYT

i as described in (7.2.11). The required computations
are essentially the same as those needed above. Since much of the work has
already been done in Example 7.2.1, let’s complete the arithmetic. We have

P =

⎛

⎝
1 1 1
2 1 0
−2 0 1

⎞

⎠ =
(
X1 |X2

)
, P− 1 =

⎛

⎝
1 −1 −1

−2 3 2
2 −2 −1

⎞

⎠ =

(
YT

1

YT
2

)

,

so

G1 = X1YT
1 =

⎛

⎝
1 −1 −1
2 −2 −2
−2 2 2

⎞

⎠ , G2 = X2YT
2 =

⎛

⎝
0 1 1
−2 3 2

2 −2 −1

⎞

⎠ .

Check that these are correct by confirming the validity of (7.2.7)–(7.2.10).
3. Since λ1 = 1 is a simple eigenvalue, (7.2.12) may be used to compute G1

from any pair of associated right-hand and left-hand eigenvectors x and yT .
Of course, P and P− 1 are not needed to determine such a pair, but since P
and P− 1 have been computed above, we can use X1 and YT

1 to make the
point that any right-hand and left-hand eigenvectors associated with λ1 = 1
will do the job because they are all of the form x = αX1 and yT = βYT

1

for α ̸= 0 ̸= β. Consequently,

G1 =
xyT

yT x
=

α

⎛

⎝
1
2
−2

⎞

⎠β ( 1 −1 −1 )

αβ
=

⎛

⎝
1 −1 −1
2 −2 −2
−2 2 2

⎞

⎠ .

Invoking (7.2.10) yields the other spectral projector as G2 = I−G1.
4. An even easier solution is obtained from the spectral theorem by writing

A−I = (1G1−3G2)−(G1 + G2) =−4G2,

A + 3I = (1G1−3G2) + 3 (G1 + G2) = 4G1,
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so that
G1 =

(A + 3I)
4

and G2 =
−(A−I)

4
.

Can you see how to make this rather ad hoc technique work in more general
situations?

5. In fact, the technique above is really a special case of a completely general
formula giving each Gi as a function A and λi as

Gi =

k∏
j=1
j ̸=i

(A−λjI)

k∏
j=1
j ̸=i

(λi−λj)
.

This “interpolation formula” is developed on p. 529.
Below is a summary of the facts concerning diagonalizability.

Summary of Diagonalizability
For an n × n matrix A with spectrum σ(A) = {λ1, λ2, . . . , λk} , the
following statements are equivalent.
• A is similar to a diagonal matrix—i.e., P− 1AP = D.

• A has a complete linearly independent set of eigenvectors.
• Every λi is semisimple—i.e., geo multA (λi) = alg multA (λi) .

• A = λ1G1 + λ2G2 + · · · + λkGk, where
◃ Gi is the projector onto N (A−λiI) along R (A−λiI),
◃ GiGj = 0 whenever i ̸= j,

◃ G1 + G2 + · · · + Gk = I,

◃ Gi =
k∏

j=1
j ̸=i

(A−λjI)
/ k∏

j=1
j ̸=i

(λi−λj) (see (7.3.11) on p. 529).

◃ If λi is a simple eigenvalue associated with right-hand and left-
hand eigenvectors x and y∗, respectively, then Gi = xy∗/y∗x.

Exercises for section 7.2

7.2.1. Diagonalize A =
(
−8 −6
12 10

)
with a similarity transformation, or else

explain why A can’t be diagonalized.
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7.2.2. (a) Verify that alg multA (λ) = geo multA (λ) for each eigenvalue of

A =

⎛

⎝
−4 −3 −3

0 −1 0
6 6 5

⎞

⎠ .

(b) Find a nonsingular P such that P− 1AP is a diagonal matrix.

7.2.3. Show that similar matrices need not have the same eigenvectors by
giving an example of two matrices that are similar but have different
eigenspaces.

7.2.4. λ = 2 is an eigenvalue for A =
(

3 2 1
0 2 0

−2 −3 0

)
. Find alg multA (λ) as

well as geo multA (λ) . Can you conclude anything about the diagonal-
izability of A from these results?

7.2.5. If B = P− 1AP, explain why Bk = P− 1AkP.

7.2.6. Compute limn→∞ An for A =
(

7/5 1/5
−1 1/2

)
.

7.2.7. Let {x1,x2, . . . ,xt} be a set of linearly independent eigenvectors for
An× n associated with respective eigenvalues {λ1, λ2, . . . , λt} , and let
X be any n × (n−t) matrix such that Pn× n =

(
x1 | · · · |xt |X

)
is

nonsingular. Prove that if P− 1 =

⎛

⎜⎜⎝

y∗
1
...

y∗
t

Y∗

⎞

⎟⎟⎠, where the y∗
i ’s are rows

and Y∗ is (n−t) × n, then {y∗
1,y∗

2, . . . ,y∗
t } is a set of linearly inde-

pendent left-hand eigenvectors associated with {λ1, λ2, . . . , λt} , respec-
tively (i.e., y∗

i A = λiy∗
i ).

7.2.8. Let A be a diagonalizable matrix, and let ρ(⋆) denote the spectral
radius (recall Example 7.1.4 on p. 497). Prove that limk→∞ Ak = 0 if
and only if ρ(A) < 1. Note: It is demonstrated on p. 617 that this
result holds for nondiagonalizable matrices as well.

7.2.9. Apply the technique used to prove Schur’s triangularization theorem
(p. 508) to construct an orthogonal matrix P such that PT AP is
upper triangular for A =

(
13 −9
16 −11

)
.
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7.2.10. Verify the Cayley–Hamilton theorem for A =
(

1 −4 −4
8 −11 −8

−8 8 5

)
.

Hint: This is the matrix from Example 7.2.1 on p. 507.

7.2.11. Since each row sum in the following symmetric matrix A is 4, it’s clear
that x = (1, 1, 1, 1)T is both a right-hand and left-hand eigenvector
associated with λ = 4 ∈ σ (A) . Use the deflation technique of Example
7.2.6 (p. 516) to determine the remaining eigenvalues of

A =

⎛

⎜⎝

1 0 2 1
0 2 1 1
2 1 1 0
1 1 0 2

⎞

⎟⎠ .

7.2.12. Explain why AGi = GiA = λiGi for the spectral projector Gi asso-
ciated with the eigenvalue λi of a diagonalizable matrix A.

7.2.13. Prove that A = cn× 1dT
1× n is diagonalizable if and only if dT c ̸= 0.

7.2.14. Prove that A =
(

W 0
0 Z

)
is diagonalizable if and only if Ws× s and

Zt× t are each diagonalizable.

7.2.15. Prove that if AB = BA, then A and B can be simultaneously tri-
angularized by a unitary similarity transformation—i.e., U∗AU = T1

and U∗BU = T2 for some unitary matrix U. Hint: Recall Exercise
7.1.20 (p. 503) along with the development of Schur’s triangularization
theorem (p. 508).

7.2.16. For diagonalizable matrices, prove that AB = BA if and only if A
and B can be simultaneously diagonalized—i.e., P− 1AP = D1 and
P− 1BP = D2 for some P. Hint: If A and B commute, then so do
P− 1AP =

(
λ1I 0
0 D

)
and P− 1BP =

(
W X
Y Z

)
.

7.2.17. Explain why the following “proof” of the Cayley–Hamilton theorem is
not valid. p(λ) = det (A−λI) =⇒ p(A) = det (A−AI) = det (0) = 0.

7.2.18. Show that the eigenvalues of the finite difference matrix (p. 19)

A =

⎛

⎜⎜⎜⎜⎝

2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1

−1 2

⎞

⎟⎟⎟⎟⎠

n× n

are λj = 4 sin2 jπ

2(n + 1)
, 1 ≤ j ≤ n.
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7.2.19. Let N =

⎛

⎜⎜⎝

0 1
. . .

. . .

. . . 1

0

⎞

⎟⎟⎠

n× n

.

(a) Show that λ ∈ σ
(
N + NT

)
if and only if iλ ∈ σ

(
N−NT

)
.

(b) Explain why N + NT is nonsingular if and only if n is even.
(c) Evaluate det

(
N−NT

)
/det

(
N + NT

)
when n is even.

7.2.20. A Toeplitz matrix having the form

C =

⎛

⎜⎜⎜⎜⎝

c0 cn− 1 cn− 2 · · · c1

c1 c0 cn− 1 · · · c2

c2 c1 c0 · · · c3
...

...
...

. . .
...

cn− 1 cn− 2 cn− 3 · · · c0

⎞

⎟⎟⎟⎟⎠

n× n

is called a circulant matrix . If p(x) = c0 + c1x + · · · + cn− 1xn− 1,
and if {1, ξ, ξ2, . . . , ξn− 1} are the nth roots of unity, then the results
of Exercise 5.8.12 (p. 379) insure that

FnCF− 1
n =

⎛

⎜⎜⎝

p(1) 0 · · · 0
0 p(ξ) · · · 0
...

...
. . .

...
0 0 · · · p(ξn− 1)

⎞

⎟⎟⎠

in which Fn is the Fourier matrix of order n. Verify these facts for the
circulant below by computing its eigenvalues and eigenvectors directly:

C =

⎛

⎜⎝

1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

⎞

⎟⎠ .

7.2.21. Suppose that (λ, x) and (µ, y∗) are right-hand and left-hand eigen-
pairs for A ∈ ℜn× n —i.e., Ax = λx and y∗A = µy∗. Explain why
y∗x = 0 whenever λ ̸= µ.

7.2.22. Consider A ∈ ℜn× n.
(a) Show that if A is diagonalizable, then there are right-hand and

left-hand eigenvectors x and y∗ associated with λ ∈ σ (A)
such that y∗x ̸= 0 so that we can make y∗x = 1.

(b) Show that not every right-hand and left-hand eigenvector x and
y∗ associated with λ ∈ σ (A) must satisfy y∗x ̸= 0.

(c) Show that (a) need not be true when A is not diagonalizable.
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7.2.23. Consider A ∈ ℜn× n with λ ∈ σ (A) .
(a) Prove that if λ is simple, then y∗x ̸= 0 for every pair of respec-

tive right-hand and left-hand eigenvectors x and y∗ associated
with λ regardless of whether or not A is diagonalizable. Hint:
Use the core-nilpotent decomposition on p. 397.

(b) Show that y∗x = 0 is possible when λ is not simple.

7.2.24. For A ∈ ℜn× n with σ (A) = {λ1, λ2, . . . , λk} , show A is diagonaliz-
able if and only if ℜn = N (A−λ1I)⊕N (A−λ2I)⊕ · · ·⊕N (A−λkI).
Hint: Recall Exercise 5.9.14.

7.2.25. The Real Schur Form. Schur’s triangularization theorem (p. 508)
insures that every square matrix A is unitarily similar to an upper-
triangular matrix—say, U∗AU = T. But even when A is real, U
and T may have to be complex if A has some complex eigenvalues.
However, the matrices (and the arithmetic) can be constrained to be real
by settling for a block-triangular result with 2 × 2 or scalar entries on
the diagonal. Prove that for each A ∈ ℜn× n there exists an orthogonal
matrix P ∈ ℜn× n and real matrices Bij such that

PT AP =

⎛

⎜⎝

B11 B12 · · · B1k
0 B22 · · · B2k
...

...
. . .

...
0 0 · · · Bkk

⎞

⎟⎠ , where Bjj is 1 × 1 or 2 × 2.

If Bjj = [λj ] is 1 × 1, then λj ∈ σ (A) , and if Bjj is 2 × 2, then
σ (Bjj) = {λj ,λj} ⊆ σ (A) .

7.2.26. When A ∈ ℜn× n is diagonalizable by a similarity transformation S,
then S may have to be complex if A has some complex eigenvalues.
Analogous to Exercise 7.2.25, we can stay in the realm of real numbers
by settling for a block-diagonal result with 1 × 1 or 2 × 2 entries on the
diagonal. Prove that if A ∈ ℜn× n is diagonalizable with real eigenvalues
{ρ1, . . . , ρr} and complex eigenvalues {λ1, λ1, λ2,λ2, . . . , λt,λt} with
2t+r = n, then there exists a nonsingular P ∈ ℜn× n and Bj ’s ∈ ℜ2× 2

such that

P− 1AP =

⎛

⎜⎝

D 0 · · · 0
0 B1 · · · 0
...

...
. . .

...
0 0 · · · Bt

⎞

⎟⎠ , where D =

⎛

⎜⎝

ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρr

⎞

⎟⎠,

and where Bj has eigenvalues λj and λj .

7.2.27. For A ∈ Cn× n, prove that x∗Ax = 0 for all x ∈ Cn× 1 ⇒ A = 0. Show
that xT Ax = 0 for all x ∈ ℜn× 1 ̸⇒ A = 0, even if A is real.
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Solutions for exercises in section 7. 2

7.2.1. The characteristic equation is λ2−2λ−8 = (λ+2)(λ−4) = 0, so the eigenvalues
are λ1 = −2 and λ2 = 4. Since no eigenvalue is repeated, (7.2.6) insures A
must be diagonalizable. A similarity transformation P that diagonalizes A is
constructed from a complete set of independent eigenvectors. Compute a pair of
eigenvectors associated with λ1 and λ2 to be

x1 =
(
−1

1

)
, x2 =

(
−1

2

)
, and set P =

(
−1 −1

1 2

)
.

Now verify that

P−1AP =
(
−2 −1

1 1

)(
−8 −6
12 10

)(
−1 −1

1 2

)
=
(
−2 0

0 4

)
= D.

7.2.2. (a) The characteristic equation is λ3 − 3λ − 2 = (λ − 2)(λ + 1)2 = 0, so the
eigenvalues are λ = 2 and λ = −1. By reducing A− 2I and A + I to echelon
form, compute bases for N (A− 2I) and N (A + I). One set of bases is

N (A− 2I) = span

⎧
⎨

⎩

⎛

⎝
−1

0
2

⎞

⎠

⎫
⎬

⎭ and N (A + I) = span

⎧
⎨

⎩

⎛

⎝
−1

1
0

⎞

⎠ ,

⎛

⎝
−1

0
1

⎞

⎠

⎫
⎬

⎭ .

Therefore,

geo multA (2) = dimN (A− 2I) = 1 = alg multA (2) ,

geo multA (−1) = dimN (A + I) = 2 = alg multA (−1) .

In other words, λ = 2 is a simple eigenvalue, and λ = −1 is a semisimple
eigenvalue.
(b) A similarity transformation P that diagonalizes A is constructed from a
complete set of independent eigenvectors, and these are obtained from the above

bases. Set P =

⎛

⎝
−1 −1 −1

0 1 0
2 0 1

⎞

⎠ , and compute P−1 =

⎛

⎝
1 1 1
0 1 0
−2 −2 −1

⎞

⎠ and

verify that P−1AP =

⎛

⎝
2 0 0
0 −1 0
0 0 −1

⎞

⎠ .

7.2.3. Consider the matrix A of Exercise 7.2.1. We know from its solution that A
is similar to D =

(
−2 0

0 4

)
, but the two eigenspaces for A are spanned by

(
−1

1

)
and

(
−1

2

)
, whereas the eigenspaces for D are spanned by the unit

vectors e1 and e2.
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7.2.4. The characteristic equation of A is p(λ) = (λ−1)(λ−2)2, so alg multA (2) = 2.
To find geo multA (2) , reduce A− 2I to echelon form to find that

N (A− 2I) = span

⎧
⎨

⎩

⎛

⎝
−1

0
1

⎞

⎠

⎫
⎬

⎭ ,

so geo multA (2) = dimN (A− 2I) = 1. Since there exists at least one eigen-
value such that geo multA (λ) < alg multA (λ) , it follows (7.2.5) on p. 512 that
A cannot be diagonalized by a similarity transformation.

7.2.5. A formal induction argument can be given, but it suffices to “do it with dots”
by writing

Bk = (P−1AP)(P−1AP) · · · (P−1AP)

= P−1A(PP−1)A(PP−1) · · · (PP−1)AP = P−1AA · · ·AP = P−1AkP.

7.2.6. limn→∞ An =
(

5 2
−10 −4

)
. Of course, you could compute A, A2, A3, . . . in

hopes of seeing a pattern, but this clumsy approach is not definitive. A better
technique is to diagonalize A with a similarity transformation, and then use the
result of Exercise 7.2.5. The characteristic equation is 0 = λ2−(19/10)λ+(1/2) =
(λ−1)(λ−(9/10)), so the eigenvalues are λ = 1 and λ = .9. By reducing A−I
and A− .9I to echelon form, we see that

N (A− I) = span

{(
−1

2

)}
and N (A− .9I) = span

{(
−2

5

)}
,

so A is indeed diagonalizable, and P =
(
−1 −2

2 5

)
is a matrix such that

P−1AP =
(

1 0
0 .9

)
= D or, equivalently, A = PDP−1. The result of Exer-

cise 7.2.5 says that An = PDnP−1 = P
(

1 0
0 .9n

)
P−1, so

lim
n→∞

An =P
(

1 0
0 0

)
P−1 =

(
−1 −2

2 5

)(
1 0
0 0

)(
−5 −2

2 1

)
=
(

5 2
−10 −4

)
.

7.2.7. It follows from P−1P = I that y∗
i xj =

{
1 if i = j,
0 if i ̸= j,

as well as y∗
i X = 0 and

Y∗xi = 0 for each i = 1, . . . , t, so

P−1AP =

⎛

⎜⎜⎜⎝

y∗
1
...

y∗
t

Y∗

⎞

⎟⎟⎟⎠
A
(
x1 | · · · |xt |X

)
=

⎛

⎜⎜⎝

λ1 · · · 0 0
...

. . .
...

...
0 · · · λt 0
0 · · · 0 Y∗AX

⎞

⎟⎟⎠ = B.
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Therefore, examining the first t rows on both sides of P−1A = BP−1 yields
y∗

i A = λiy∗
i for i = 1, . . . , t.

7.2.8. If P−1AP = diag (λ1, λ2, . . . , λn) , then P−1AkP = diag
(
λk

1 , λk
2 , . . . , λk

n

)
for

k = 0, 1, 2, . . . or, equivalently, Ak = P diag
(
λk

1 , λk
2 , . . . , λk

n

)
P−1. Therefore,

Ak → 0 if and only if each λk
i → 0, which is equivalent to saying that |λi| < 1

for each i. Since ρ(A) = maxλi∈σ(A) |λi| (recall Example 7.1.4 on p. 497), it
follows that Ak → 0 if and only if ρ(A) < 1.

7.2.9. The characteristic equation for A is λ2 − 2λ + 1, so λ = 1 is the only distinct

eigenvalue. By reducing A− I to echelon form, we see that
(

3
4

)
is a basis for

N (A− I), so x = (1/5)
(

3
4

)
is an eigenvector of unit length. Following the

procedure on p. 325, we find that R =
(

3/5 4/5
4/5 −3/5

)
is an elementary reflector

having x as its first column, and RT AR = RAR =
(

1 25
0 1

)
.

7.2.10. From Example 7.2.1 on p. 507 we see that the characteristic equation for A is
p(λ) = λ3 + 5λ2 + 3λ − 9 = (λ − 1)(λ + 3)2 = 0. Straightforward computation
shows that

p(A) = (A− I)(A + 3I)2 =

⎛

⎝
0 −4 −4
8 −12 −8
−8 8 4

⎞

⎠

⎛

⎝
16 −16 −16
32 −32 −32
−32 32 32

⎞

⎠ = 0.

7.2.11. Rescale the observed eigenvector as x = (1/2)(1, 1, 1, 1)T = y so that xT x = 1.
Follow the procedure described in Example 5.6.3 (p. 325), and set u = x − e1

to construct

R = I− 2uuT

uT u
=

1
2

⎛

⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞

⎟⎠ = P =
[
x |X

]
(since x = y ).

Consequently, B = XT AX =

⎛

⎝
−1 0 −1

0 2 0
−1 0 1

⎞

⎠ , and σ (B) = {2,
√

2, −
√

2}.

7.2.12. Use the spectral theorem with properties GiGj = 0 for i ̸= j and G2
i = Gi

to write AGi = (λ1G1 + λ2G2 + · · · + λkGk)Gi = λiG2
i = λiGi. A similar

argument shows GiA = λiGi.
7.2.13. Use (6.2.3) to show that λn−1(λ−dT c) = 0 is the characteristic equation for A.

Thus λ = 0 and λ = dT c are the eigenvalues of A. We know from (7.2.5) that
A is diagonalizable if and only if the algebraic and geometric multiplicities agree
for each eigenvalue. Since geo multA (0) = dimN (A) = n − rank (A) = n − 1,
and since

alg multA (0) =
{

n− 1 if dT c ̸= 0,
n if dT c = 0,



134 Solutions

it follows that A is diagonalizable if and only if dT c ̸= 0.
7.2.14. If W and Z are diagonalizable—say P−1WP and Q−1ZQ are diagonal—

then
(

P 0
0 Q

)
diagonalizes A. Use an indirect argument for the converse.

Suppose A is diagonalizable but W (or Z ) is not. Then there is an eigenvalue
λ ∈ σ (W) with geo multW (λ) < alg multW (λ) . Since σ (A) = σ (W) ∪ σ (Z)
(Exercise 7.1.4), this would mean that

geo multA (λ) = dimN (A− λI) = (s + t)− rank (A− λI)
= (s− rank (W − λI)) + (t− rank (Z− λI))
= dimN (W − λI) + dimN (Z− λI)
= geo multW (λ) + geo multZ (λ)
< alg multW (λ) + alg multZ (λ)
< alg multA (λ) ,

which contradicts the fact that A is diagonalizable.
7.2.15. If AB = BA, then, by Exercise 7.1.20 (p. 503), A and B have a common

eigenvector—say Ax = λx and Bx = µx, where x has been scaled so that
∥x∥2 = 1. If R =

[
x |X

]
is a unitary matrix having x as its first column

(Example 5.6.3, p. 325), then

R∗AR =
(

λ x∗AX
0 X∗AX

)
and R∗BR =

(
µ x∗BX
0 X∗BX

)
.

Since A and B commute, so do R∗AR and R∗BR, which in turn implies
A2 = X∗AX and B2 = X∗BX commute. Thus the problem is deflated, so the
same argument can be applied inductively in a manner similar to the development
of Schur’s triangularization theorem (p. 508).

7.2.16. If P−1AP = D1 and P−1BP = D2 are both diagonal, then D1D2 = D2D1

implies that AB = BA. Conversely, suppose AB = BA. Let λ ∈ σ (A) with

alg multA (λ) = a, and let P be such that P−1AP =
(

λIa 0
0 D

)
, where D

is a diagonal matrix with λ ̸∈ σ (D) . Since A and B commute, so do P−1AP

and P−1BP. Consequently, if P−1BP =
(

W X
Y Z

)
, then

(
λIa 0
0 D

)(
W X
Y Z

)
=
(

W X
Y Z

)(
λIa 0
0 D

)
=⇒

{
λX = XD,
DY = λY,

so (D−λI)X = 0 and (D−λI)Y = 0. But (D−λI) is nonsingular, so X = 0

and Y = 0, and thus P−1BP =
(

W 0
0 Z

)
. Since B is diagonalizable, so is
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P−1BP, and hence so are W and Z (Exercise 7.2.14). If Q =
(

Qw 0
0 Qz

)
,

where Qw and Qz are such that Q−1
w WQw = Dw and Q−1

z ZQz = Dz are
each diagonal, then

(PQ)−1A(PQ) =
(

λIa 0
0 Q−1

z DQz

)
and (PQ)−1B(PQ) =

(
Dw 0
0 Dz

)
.

Thus the problem is deflated because A2 = Q−1
z DQz and B2 = Dz commute

and are diagonalizable, so the same argument can be applied to them. If A has k
distinct eigenvalues, then the desired conclusion is attained after k repetitions.

7.2.17. It’s not legitimate to equate p(A) with det (A−AI) because the former is a
matrix while the latter is a scalar.

7.2.18. This follows from the eigenvalue formula developed in Example 7.2.5 (p. 514) by
using the identity 1− cos θ = 2 sin2(θ/2).

7.2.19. (a) The result in Example 7.2.5 (p. 514) shows that the eigenvalues of N+NT

and N−NT are λj = 2 cos (jπ/n + 1) and λj = 2i cos (jπ/n + 1) , respectively.
(b) Since N−NT is skew symmetric, it follows from Exercise 6.1.12 (p. 473)
that N−NT is nonsingular if and only if n is even, which is equivalent to saying
N −NT has no zero eigenvalues (recall Exercise 7.1.6, p. 501), and hence, by
part (a), the same is true for N + NT .

(b: Alternate) Since the eigenvalues of N+NT are λj = 2 cos (jπ/n + 1) you
can argue that N+NT has a zero eigenvalue (and hence is singular) if and only
if n is odd by showing that there exists an integer α such that jπ/n+1 = απ/2
for some 1≤j ≤n if and only if n is odd.
(c) Since a determinant is the product of eigenvalues (recall (7.1.8), p. 494),
det
(
N−NT

)
/det

(
N + NT

)
= (iλ1 · · · iλn)/(λ1 · · ·λn) = in = (−1)n/2.

7.2.20. The eigenvalues are {2, 0, 2, 0}. The columns of F4 =

⎛

⎜⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞

⎟⎠ are

corresponding eigenvectors.
7.2.21. Ax = λx =⇒ y∗Ax = λy∗x and y∗A = µy∗ =⇒ y∗Ax = µy∗x.

Therefore, λy∗x = µy∗x =⇒ (λ− µ)y∗x = 0 =⇒ y∗x = 0 when λ ̸= µ.
7.2.22. (a) Suppose P is a nonsingular matrix such that P−1AP = D is diagonal,

and suppose that λ is the kth diagonal entry in D. If x and y∗ are the kth

column and kth row in P and P−1, respectively, then x and y∗ must be
right-hand and left-hand eigenvectors associated with λ such that y∗x = 1.

(b) Consider A = I with x = ei and y = ej for i ̸= j.

(c) Consider A =
(

0 1
0 0

)
.

7.2.23. (a) Suppose not—i.e., suppose y∗x = 0. Then

x⊥span (y) = N (A− λI)∗ =⇒ x ∈ N (A− λI)∗⊥ = R (A− λI).
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Also, x ∈ N (A− λI), so x ∈ R (A− λI)∩N (A− λI). However, because λ is
a simple eigenvalue, the the core-nilpotent decomposition on p. 397 insures that

A − λI is similar to a matrix of the form
(

C 0
0 01×1

)
, and this implies that

R (A− λI)∩N (A− λI) = 0 (Exercise 5.10.12, p. 402), which is a contradiction.
Thus y∗x ̸= 0.

(b) Consider A = I with x = ei and y = ej for i ̸= j.
7.2.24. Let Bi be a basis for N (A− λiI), and suppose A is diagonalizable. Since

geo multA (λi) = alg multA (λi) for each i, (7.2.4) implies B = B1∪B2∪ · · ·∪Bk

is a set of n independent vectors—i.e., B is a basis for ℜn. Exercise 5.9.14
now guarantees that ℜn = N (A− λ1I) ⊕ N (A− λ2I) ⊕ · · · ⊕ N (A− λkI).
Conversely, if this equation holds, then Exercise 5.9.14 says B = B1∪B2∪· · ·∪Bk

is a basis for ℜn, and hence A is diagonalizable because B is a complete
independent set of eigenvectors.

7.2.25. Proceed inductively just as in the development of Schur’s triangularization the-
orem. If the first eigenvalue λ is real, the reduction is exactly the same as
described on p. 508 (with everything being real). If λ is complex, then (λ,x)
and (λ,x) are both eigenpairs for A, and, by (7.2.3), {x,x} is linearly indepen-
dent. Consequently, if x = u + iv, with u,v ∈ ℜn×1, then {u,v} is linearly
independent—otherwise, u = ξv implies x = (1 + iξ)u and x = (1 − iξ)u,
which is impossible. Let λ = α + iβ, α, β ∈ ℜ, and observe that Ax = λx

implies Au = αu− βv and Av = βu + αv, so AW = W
(

α β
−β α

)
, where

W =
[
u |v

]
. Let W = Qn×2R2×2 be a rectangular QR factorization (p. 311),

and let B = R
(

α β
−β α

)
R−1 so that σ (B) = σ

(
α β
−β α

)
= {λ, λ}, and

AW = AQR = QR
(

α β
−β α

)
=⇒ QT AQ = R

(
α β
−β α

)
R−1 = B.

If Xn×n−2 is chosen so that P =
[
Q |X

]
is an orthogonal matrix (i.e., the

columns of X complete the two columns of Q to an orthonormal basis for
ℜn ), then XT AQ = XT QB = 0, and

PT AP =
(

QT AQ QT AX
XT AQ XT AX

)
=
(

B QT AX
0 XT AX

)
.

Now repeat the argument on the n− 2 × n− 2 matrix XT AX. Continuing in
this manner produces the desired conclusion.

7.2.26. Let the columns Rn×r be linearly independent eigenvectors corresponding to
the real eigenvalues ρj , and let {x1,x1,x2,x2, . . . ,xt,xt} be a set of linearly
independent eigenvectors associated with {λ1, λ1, λ2, λ2, . . . , λt, λt} so that the
matrix Q =

[
R |x1 |x1 | · · · |xt |xt

]
is nonsingular. Write xj = uj + ivj for
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uj ,vj ∈ ℜn×1 and λj = αj + iβj for α, β ∈ ℜ, and let P be the real matrix
P =

[
R |u1 |v1 |u2 |v2 | · · · |ut |vt

]
. This matrix is nonsingular because Exer-

cise 6.1.14 can be used to show that det (P) = 2t(−i)t det (Q). For example, if
t = 1, then P =

[
R |u1 |v1

]
and

det (Q) = det
[
R |x1 |x1] = det

[
R |u1 + iv1 |u1 − iv1

]

= det
[
R |u1 |u1

]
+ det

[
R |u1 |− iv1

]

+ det
[
R | iv1 |u1

]
+ det

[
R | iv1 | iv1

]

= −i det
[
R |u1 |v1

]
+ i det

[
R |v1 |u1

]

= −i det
[
R |u1 |v1

]
− i det

[
R |u1 |v1

]
= 2(−i) det (P).

Induction can now be used. The equations A(uj + ivj) = (αj + iβj)(uj + ivj)
yield Auj = αjuj − βjvj and Avj = βjuj + αjvj . Couple these with the fact
that AR = RD to conclude that

AP =
[
RD | · · · |αjuj − βjvj |βjuj + αjvj | · · ·

]
= P

⎛

⎜⎜⎝

D 0 · · · 0
0 B1 · · · 0
...

...
. . .

...
0 0 · · · Bt

⎞

⎟⎟⎠,

where

D =

⎛

⎜⎜⎝

ρ1 0 · · · 0
0 ρ2 · · · 0
...

...
. . .

...
0 0 · · · ρr

⎞

⎟⎟⎠ and Bj =
(

αj βj

−βj αj

)
.

7.2.27. Schur’s triangularization theorem says U∗AU = T where U is unitary and T
is upper triangular. Setting x = Uei in x∗Ax = 0 yields that tii = 0 for each
i, so tij = 0 for all i ≥ j. Now set x = U(ei +ej) with i < j in x∗Ax = 0 to
conclude that tij = 0 whenever i < j. Consequently, T = 0, and thus A = 0.

To see that xT Ax = 0 ∀ x ∈ ℜn×1 ̸⇒ A = 0, consider A =
(

0 −1
1 0

)
.

Solutions for exercises in section 7. 3

7.3.1. cos A =
(

0 1
1 0

)
. The characteristic equation for A is λ2 + πλ = 0, so the

eigenvalues of A are λ1 = 0 and λ2 = −π. Note that A is diagonalizable
because no eigenvalue is repeated. Associated eigenvectors are computed in the
usual way to be

x1 =
(

1
1

)
and x2 =

(
−1

1

)
,

so
P =

(
1 −1
1 1

)
and P−1 =

1
2

(
1 1
−1 1

)
.


