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We study a two-point boundary-value problem describing steady states of a
population dynamics model with diffusion, logistic growth, and nonlinear density-
dependent dispersal on the boundary. In particular, we focus on a model in
which the population exhibits hump-shaped density-dependent dispersal on the
boundary, and explore its effects on existence, uniqueness and multiplicity of
steady states.

1. Introduction

Since the early work of Fisher [1937] and Kolmogorov, Petrovskii, and Piskunov
[Kolmogorov et al. 1937], differential equations models have been used to model
the dynamics of a population inhabiting a patch. Since their early work, the models
have grown in complexity with the goal of understanding long-term persistence
of populations through the analysis of such models. In a one-dimensional patch
�= (0, `) for some ` > 0 such models take the form

ut = Du x̃ x̃ + u f̃ (u), x̃ ∈�, t > 0,

B1u(0, t)= 0, t > 0,

B2u(`, t)= 0, t > 0,

u(x̃, 0)= u0(x̃), (1)

where u(x̃, t) is the population density at point x̃ ∈� at time t > 0, D is a diffusion
rate within the habitat, f̃ : (0,∞)→ (−∞,∞) is the per-capita growth rate, B1 and
B2 are boundary operators (possibly nonlinear), and u0 : [0, `]→ [0,∞) is an initial
population distribution. Such models are often referred to as “reaction-diffusion
models” as the rate of change of the population density (ut ) is determined by both a
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Figure 1. Graphs of possible density-dispersal relations, where z
is population density and 1−α(z) is the probability of dispersal
from the patch upon reaching a point on the boundary of where
the local population density is z.

reaction term (u f̃ (u)), which in this case models the growth of the population, and
a diffusion term (Du x̃ x̃ ), which models movement of the population. The diffusion
term Du x̃ x̃ for population movement can be derived from a individual random walk
model [Skellam 1951] and is a good fit for modeling movement of many different
species [Kareiva 1983; Turchin and Thoeny 1993]. See [Cantrell and Cosner 2003]
for the derivation and analysis of a number of models of this form.

In this paper, we consider a reaction-diffusion model of a population in a primary
patch � which is surrounded by a secondary region (called the matrix, in ecology)
with hostility S∗ > 0 (S∗ ≈ 0 indicates that the matrix is relatively not hostile, while
S∗ � 0 indicates that the matrix is relatively more hostile). Such scenarios are
common in habitats experiencing fragmentation, whereby large regions of primary
habitat are broken into smaller fragments either by destruction of parts of the primary
habitat or replacement of the primary habitat by a less suitable matrix. Individuals
within the primary patch move via diffusion, and if they reach the boundary, choose
to remain in the patch with probability α(z), where α : [0,∞)→ (0,∞) is a function
which depends on the population density at the boundary. We note that 1−α(z)
gives the dispersal rate of the population from the primary patch, a parameter of
interest to ecologists.

There are three main types of density-dependent dispersal 1− α(z) that have
been studied; see Figure 1. Specifically, species that demonstrate positive density-
dependent dispersal (+DDD) have a low dispersal rate for low densities and a high
dispersal rate for high densities. Species of this kind are most likely experiencing
crowding effects or lack of resources. Comparatively, for species demonstrating
negative density-dependent dispersal (−DDD), there is a higher chance for dispersal
when there is a smaller population density. This may be because the species is
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Figure 2. Examples of species which have been observed to ex-
hibit −DDD at low densities and +DDD at high densities. Left:
blue-footed booby, Sula nebouxii (see [Kim et al. 2009]). Image
by Bernard Gagnon/CC BY-SA 3.0. Right: Glanville fritillary
butterfly, Melitaea cinxia (see [Kuussaari et al. 1998] for −DDD,
and see [Enfjäll and Leimar 2005] for +DDD). Photo by Christian
Fischer/CC BY-SA 3.0.

experiencing mate scarcity or conspecific attraction. There is also some evidence of
species that exhibit −DDD at low densities and +DDD at high densities, which we
refer to as u-shaped density-dependent dispersal (UDDD). UDDD has been of recent
interest in the mathematical literature, see [Cantrell and Cosner 2003; Cantrell et al.
1998; Cronin et al. 2019; Fonseka et al. 2019; Goddard et al. 2018; ≥ 2020], as
ecologists find evidence that the blue-footed booby and Glanville fritillary butterfly
(see Figure 2) exhibit UDDD in nature. In this paper, we are interested in studying
species that demonstrate hump-shaped density-dependent dispersal (HDDD), in
which species exhibit +DDD at low densities and −DDD at high densities.

We further assume that individuals in the population exhibit logistic growth. In
particular, we assume the per-capita growth rate takes the form

f̃ (u)= r
(

1−
u
K

)
,

where r > 0 is the maximum population growth rate and K > 0 is the carrying
capacity such that f̃ (u) > 0 for u ∈ (0, K ) and f̃ (u) < 0 for u ∈ (K ,∞).

Based on these assumptions, the resulting model is [Cronin et al. 2019]

ut = Du x̃ x̃ + ru
(
1− u

K

)
, x̃ ∈�, t > 0,

−Dα(u(0, t))u x̃(0, t)+ S∗[1−α(u(0, t))]u(0, t)= 0,

Dα(u(`, t))u x̃(`, t)+ S∗[1−α(u(`, t))]u(`, t)= 0,

(2)

where u(x̃, t) is the population density at point x̃ ∈ � at time t > 0 and K is the
carrying capacity of the population. Rescaling the spatial variable by taking x = x̃/`,
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Figure 3. Illustration of relationship between α(z) (left) and dis-
persal [1− α(z)] (right). Note that A is the density at which the
probability of remaining in the patch upon reaching the boundary is
at a minimum (in particular, α(A)= ε̄/(1+ε̄)). Therefore, dispersal
on the boundary reaches a maximum of 1−α(A)= 1/(1+ ε̄) when
density is A.

we have u(x̃, t)= u(x`, t)= z(x, t), and the model becomes

zt =
D
`2 zxx + r z

(
1−

z
K

)
, x ∈ (0, 1), t > 0,

−
D
`
α(z(0, t))zx(0, t)+ S∗[1−α(z(0, t))]z(0, t)= 0,

D
`
α(z(1, t))zx(1, t)+ S∗[1−α(z(1, t))]z(1, t)= 0,

(3)

where z(x, t) is the population density at point x ∈ (0, 1) at time t > 0.
Of particular importance in understanding the dynamics of (3) are the steady

states (limt→∞ z(x, t)) of (3). We take α(z) of the form

α(z)=
(z− A)2+ ε̄

(z− A)2+ (1+ ε̄)

for 0 < A < K and ε̄ > 0 and examine if steady states of (3) exist. In Figure 3,
we note that dispersal 1−α(z) is hump-shaped, as desired, and that the parameter
A determines the range of population densities on which dispersal is positive
density-dependent and negative density-dependent. In particular, if A ≈ 0, then the
population exhibits positive density-dependent dispersal for most densities, while
if A ≈ K , the population exhibits negative density-dependent dispersal for most
densities.

Letting

v =
z
K
, λ=

r`2

D
, γ =

S∗

K 2
√

r D
, A =

A
K
, ε =

ε̄

K
,
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we perform a nondimensionalization which yields the one-dimensional problem

−v′′ = λv(1− v), x ∈ (0, 1),

v′(0)=
√
λγ

v(0)
(v(0)− A)2+ ε

,

v′(1)=−
√
λγ

v(1)
(v(1)− A)2+ ε

.

(4)

In this paper, we will examine only solutions which are symmetric about x= 1
2 . Note

that the following lemma establishes that positive solutions are, in fact, symmetric
about x = 1

2 when ε > 1− A2.

Lemma 1. If ε > 1− A2, then any positive solution v to (4) is symmetric about
x = 1

2 ; that is, v
( 1

2 − x
)
= v

( 1
2 + x

)
for x ∈

[
0, 1

2

]
.

Proof. First, we observe from (4) that any positive solution v of (4) is concave and
has exactly one maximum value x0 ∈ (0, 1). Furthermore, the solution v of (4) is
symmetric about x0.

Suppose x0 <
1
2 , or equivalently 2x0 < 1. By symmetry of the solution, let

q1 = v(2x0) = v(0) ≤ 1. Then |v′(2x0)| =
√
λγ q1/((q1 − A)2 + ε). Now, let

v(1)= q2 < q1. Then |v′(1)| =
√
λγ q2/((q2− A)2+ ε).

By the assumption that ε > 1− A2 and q ≤ 1, we have

d
dq

[
q

(q − A)2+ ε

]
=

A2
+ ε− q2

((q − A)2+ ε)2
≥

A2
+ ε− 1

((q − A)2+ ε)2
> 0.

Therefore, since q2 < q1, we must have
q2

(q2− A)2+ ε
<

q1

(q1− A)2+ ε
,

which implies |v′(1)| < |v′(2x0)|. But this is a contradiction, since v is concave,
and therefore q1 = q2 and x0 =

1
2 . �

For simplicity of notation, we will take f (s)= s(1−s) (the nonlinearity appearing
in the differential equation in (4)), and let F(s) =

∫ s
0 f (t) dt . We establish the

following theorem:

Theorem 2. There exists a positive, symmetric solution v to (4) with ‖v‖∞ = ρ,
v(1)= q , and 0< q < ρ if and only if

2
(∫ ρ

q

dz
√

F(ρ)− F(z)

)2

= λ (5)

and
γ q

(q − A)2+ ε
=
√

2
√

F(ρ)− F(q) (6)

hold.
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In Section 2, we prove Theorem 2 via a quadrature method first introduced
in [Laetsch 1971], and recently extended to nonlinear boundary conditions in
[Goddard et al. 2018; ≥ 2020]. In Section 3, we provide computationally generated
bifurcation curves of (4), and in Section 4, we discuss the biological implications
of our numerical results.

Remark 3. We emphasize here that Theorem 2 refers only to positive, symmetric
solutions of (4). In the case that ε > 1− A2, by Lemma 1 all positive solutions are
symmetric. If, however, ε ≤ 1− A2, then there may be additional nonsymmetric
solutions which are not captured by Theorem 2.

2. Proof of Theorem 2

To prove Theorem 2, we proceed via a quadrature method [Laetsch 1971]. We first
show that if v is a positive solution to (4) with ‖v‖∞= ρ and v(0)= q = v(1), then
λ, ρ, and q must satisfy (5) and (6). Multiplying both sides of (4) by v′(x) yields(

−[v′(x)]2

2

)′
= λ(F(v(x)))′. (7)

Since v
(1

2

)
= ρ is a maximum and therefore v′

( 1
2

)
= 0, integrating (7) from s to 1

2
and rearranging terms gives

v′(s)=
√

2λ
√

F(ρ)− F(v(s)). (8)

Integrating (8) from 0 to x and recalling that v(0)= q , we obtain∫ v(x)

q

dz
√

F(ρ)− F(z)
=
√

2λx . (9)

When x = 1
2 , we have ∫ ρ

q

dz
√

F(ρ)− F(z)
=

√
λ

2
,

and hence (5) is satisfied.
Substituting x = 0 into (8) and applying the boundary condition in (4) yields

γ q
(q − A)2+ ε

=
√

2
√

F(ρ)− F(q). (10)

Hence, (6) is also satisfied.
We now prove the reverse implication. Let λ, ρ, and q satisfy (5) and (6). We

define v : [0, 1] → [0, ρ] by (9) if x ∈
(
0, 1

2

)
, v(0) = q, and v(x) = v

(
x − 1

2

)
if

x ∈
( 1

2 , 1
]
.
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Note that
√

2λx increases from 0 to∫ ρ

q

dz
√

F(ρ)− F(z)

as x increases from 0 to 1
2 . Similarly,∫ v

q

dz
√

F(ρ)− F(z)

increases from 0 to ∫ ρ

q

dz
√

F(ρ)− F(z)

as v increases from q to ρ. Hence, v(x) is well defined for x ∈
(
0, 1

2

)
.

Defining H :
(
0, 1

2

)
× (q, ρ)→ R by

H(τ, ν)=
∫ ν

q

dz
√

F(ρ)− F(s)
−
√

2λτ,

we observe that H ∈ C1
((

0, 1
2

)
× (q, ρ)

)
, H(x, v(x))= 0 for x ∈

(
0, 1

2

)
, and

∂H
∂ν

∣∣∣∣
(t,v(t))

=
1

√
F(ρ)− F(v(t))

> 0.

By the implicit function theorem, we may therefore conclude that v ∈ C1
(
0, 1

2

)
.

From (9), we may now write

v′(x)=
√

2λ[F(ρ)− F(v(x))], x ∈
(
0, 1

2

)
, (11)

and since F ∈ C1(q, ρ) and v ∈ C1
(
0, 1

2

)
, we observe that v′ ∈ C1

(
0, 1

2

)
. Differen-

tiating again, we find that

−v′′(x)= λ f (v(x)), x ∈
(
0, 1

2

)
.

Hence, since f is continuous, v
( 1

2

)
= ρ and v′

( 1
2

)
= 0, we conclude that v ∈

C2(0, 1)∩C1
[0, 1] by our extension of v. Moreover, from (11), we observe that

v′(0)=
√

2λ[F(ρ)− F(q)] and from (5), this implies

v′(0)=
√
λγ

v(0)
(v(0)− A)2+ ε

.

Our extension of v guarantees that

v′(1)=−
√
λγ

v(1)
(v(1)− A)2+ ε

.

Hence, v is a positive solution to (4) with v(0)= q = v(1) and v
( 1

2

)
= ρ as desired.
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3. Numerical results

Using Mathematica, we may numerically solve for (λ, ρ) pairs which simultane-
ously satisfy (5) and (6). To do so, we implement the following algorithm:

(1) Choose ρ ∈ (0, 1).

(2) For a given ρ, use nonlinear solver to solve (6) for q .

(3) For a given ρ and its corresponding value for q , use (5) to find λ.

(4) Plot (λ, ρ) pair.

We select 500 equally spaced values for ρ in (0, 1). For a fixed ρ, we use the
FindRoot command in Mathematica, which employs Newton’s method, to solve
(6) for q with an accuracy of 10−4. Some examples of bifurcation curves with a
fixed value of ε = .1, and different values for γ and A are provided in Figures 4–7.
Parameter values are chosen to illustrate the variety of possible bifurcation curves,
but are not otherwise known to be of ecological significance.

We remind the reader, as in Remark 3, that the bifurcation curves provided in
Figures 4–7 are the bifurcation curves for positive, symmetric solutions only. Any
reference in this section to a solution should be interpreted as a reference to a
positive, symmetric solution.

We first illustrate in Figure 4 how the number of solutions to (4) may depend
on A. For ε = .1 and γ = .1, we plot in Figure 4 the bifurcation curve for two
differing values of A. When A = .5, we observe that for sufficiently small λ, there
are no solutions, while for λ sufficiently large, there is a unique solution. We notice,
however, that when A is decreased to A = .25, we now have multiple positive,
symmetric solutions for a range of λ.

Secondly, we illustrate in Figures 5 and 6 how multiplicity of solutions may
occur. In Figure 5, we first observe how the structure of these ranges of λ for which
multiple solutions exist can also vary depending on A. Specifically, in Figure 5,
left, for sufficiently small λ there are no solutions, then for the proceeding ranges
of λ there is one solution, three solutions, and one solution. Similarly, in Figure 5,

2 4 6 8

0.2

0.4

0.6

0.8

‖v‖∞

λ
0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

‖v‖∞

λ

Figure 4. For γ = .1, we observe that varying values of A introduce
multiplicity of solutions: A = .5 (left) and A = .25 (right).
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Figure 5. For γ = .1, we observe that the multiplicity of solutions
and the range of λ for which certain multiplicities exist change as
A is varied: A = .15 (left), A = .1 (middle), A = .05 (right).

middle, for sufficiently small λ there are no solutions, then for the proceeding values
of λ there are three solutions then one solution. In Figure 5, right, for sufficiently
small λ there are no solutions, then for the proceeding ranges of λ there are two
solutions, three solutions, and one solution.

Building from Figure 5, we illustrate in Figure 6 the multiplicity of solutions that
can occur for certain parameter regimes. When γ = ε = A = .1, we numerically
solve (5), (6) for ρ, q when λ= 3. We find solutions

(ρ1, q1)= (0.12558361681607486, 0.08633543422628163),

(ρ2, q2)= (0.4731562619350849, 0.38016022177071546),

(ρ3, q3)= (0.8091464421614853, 0.7490510239916139).

In Figure 6, we illustrate the correspondence between the multiple points (3, ρi ),
i = 1, 2, 3, on the bifurcation curve and the multiple solutions vi , i = 1, 2, 3, of
(4), with vi (0)= qi = vi (1) and ‖vi‖∞ = vi

( 1
2

)
= ρi .

Finally, we illustrate in Figure 7 how large values of γ may force uniqueness of
solutions. For ε = .1 and γ = 10, we observe that even a large change in the value
of A does not change the shape of the graph. Thus, we conjecture that if γ � 1,
there exists λ∗ > 0, so that (4) has no solution for 0< λ< λ∗, has a unique solution
for every λ > λ∗, and ρ(λ) is strictly increasing.

2 4 6 8

0.2

0.4

0.6

0.8

1.0

‖v‖∞

λ
0.2 0.4 0.6 0.8

x

0.2

0.4

0.6

0.8

1.0

v(x)

v(x)

x

Figure 6. For γ = ε = A = .1, we observe there are multiple
solutions when λ= 3. Left: bifurcation curve highlighting points
(3, ρi ), i = 1, 2, 3. Right: solutions vi of (4) with λ= 3.
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Figure 7. For γ = 10, we observe that even large perturbations of
the parameter A do not introduce multiplicity of solutions: A = .5
(left), A = .000005 (right).

4. Biological interpretation

Given the numerical results in Section 3, we consider now the biological implications.
Recall that λ= r`2/D and γ = S∗/

√
r D, which shows that λ is proportional to the

square of the patch size ` and γ is proportional to the hostility of the matrix S∗.
First, we observe that, in all numerical cases explored, regardless of our choices

of γ or A, there exist λ∗ > 0 such that (4) has no solution for λ < λ∗. In biological
terms, there exists some minimum patch size `∗ =

√
Dλ∗/r that will support a

population. Furthermore, in all cases, we observe that for λ sufficiently large,
there exists a unique steady state. This illustrates a decreasing role of boundary
effects on a population as the habitat grows larger. We note that such behavior
is consistent with theoretical results proved in [Fonseka et al. 2019] in the case
of UDDD.

Secondly, we observe that when γ is sufficiently small, the parameter A has a
large influence on the shape of the bifurcation curve, in particular, by introducing
multiple steady states. This phenomena is biologically interesting, as this implies
that the population density that induces maximum dispersal on the boundary also
determines whether multiple steady states of the population exist, and if so, for
what ranges of patch sizes the steady states persist. On the other hand, when γ is
sufficiently large, we observe that changes in the parameter A do not influence the
shape of the bifurcation curve, and in particular, do not introduce multiple steady
states. This suggests that as the outside matrix becomes increasingly hostile, any
individual leaving the population dies almost immediately, and thus, the habitat
behaves almost identically to one with a lethal boundary.
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