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Abstract

Quinn A. Morris

The Fuc̆́ık spectrum of a linear operator, L, is defined to be the set,

⌃ =
�
(a, b) 2 R2 : there is a non-trivial solution to Lu = au+ � bu� .

The Fuc̆́ık spectrum is important since it reflects parameter values for which the
existence of solutions to the equation Lu = au+ � bu� + g(u) may change. In this
thesis, we examine the Fuc̆́ık spectrum of both matrix and di↵erential operators. A
variational characterization due to Castro and a standard saddle point theorem are
used to determine existence of solutions in non-resonance and resonance cases, with
the development of generalized orthogonality conditions for existence of solutions in
the resonance cases. Our results improve upon existing theorems due to Marguiles
and Marguiles in the matrix case, and Bliss, Buerger, and Rumbos in the di↵erential
case.
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Chapter 1: Introduction

Given some linear operator, L, consider the equation

Lu = au+ � bu� + g(u), (1.1)

where, if u is a vector, then u+ =

2

64
u+
1
...
u+
n

3

75, u� =

2

64
u�
1
...
u�
n

3

75 and u±
i = max{0,±ui} and

if u is a function, u±(t) = max{0,±u(t)}.

The object of interest in this thesis is the Fuc̆́ık spectrum of L, denoted ⌃, where

⌃ =
�
(a, b) 2 R2 : there is a non-trivial solution to Lu = au+ � bu� . (1.2)

The Fuc̆́ık spectrum is of interest since it is known to identify parameter values where

the solvability of equations of the form Lu = au+�bu�+g(u) may change. Motivation

for studying such problems often depends on the choice of operator. When L is a

second derivative operator, such equations model asymmetric oscillating systems. An

example is a suspension bridge, which experiences a spring-like restoring force in both

directions due to the sti↵ness of the road bed and a tension force from the suspension

cables when it moves below equilibrium (see [4], [6]). If L is a matrix, such problems

generally arise in the numerical study of di↵erential equations, as in [7].

Success has been found proving existence theorems for problems of this type using

degree-theoretic arguments, as in [4] and [7]. More recently, theorems due to Cas-

tro and Drábek and Robinson (see [2] and [3], respectively) have used a variational

approach to solve such problems. Using the method of Castro in [2], we wish to

find a variational characterization of the Fuc̆́ık spectrum for both matrix and dif-

ferential operators, and then use the variational characterization to find conditions
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for existence of solutions to (1.1), in both resonance and non-resonance cases (i.e.,

(a, b) 2 ⌃ and (a, b) /2 ⌃, respectively). In the resonance case, we establish a gen-

eralized orthogonality condition, a type of Fredholm Alternative, for existence of a

solution.

By treating the matrix and ODE cases in parallel, we are able to highlight the

improvements that we have made to the existing literature (see [7] and [1]) and clearly

highly where the finite and infinite dimensional cases di↵er. Not surprisingly, the most

prominent di↵erences arise the in compactness arguments.

The idea of the variational method is that in some cases, if it is di�cult to find

solutions to a particular equation, say f(x) = 0, directly, it may be easier to identify an

appropriate functional, call it F , such that F 0(x) = f(x), and look for critical points

of F . As a more concrete example, consider that, if we wished to solve x3+x+1 = 0,

we could examine the function F (x) = 1
4x

4 + 1
2x

2 + x and look for critical points.

While this may not make it easier to solve the equation analytically, it does make it

easier to prove the existence of solutions.

In order to determine the existence of a solution, there are two main areas which

must be examined. First, we must look at the geometry of the appropriate functional.

In particular, we will show that the chosen functional is concave and anticoercive on

certain subsets of the domain. We will then show that the functional is bounded

below, or possibly coercive, on a complementary subset of the domain.

Definition 1. A functional, F : D ! R, is concave on a subset U ⇢ D if, for all

x, y 2 U , hrF (y)�rF (x), y � xi  0. If hrF (y)�rF (x), y � xi < 0, the F is

called strictly concave.

Definition 2. A functional, F : D ! R, is anticoercive on a subset U ⇢ D if, given

any sequence {xk}1k=1 ⇢ U such that kxkkD ! 1, F (xk) ! �1.
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Thinking of these two properties geometrically, the concavity property will give

us that any line drawn between two points in the image of F will lie below the actual

functional values along that line. The anticoercive property tells us that as one goes

out to 1 in any direction, the values of the functional go towards �1. Once we

have established that our functional is concave and anticoercive on some subset, then

we will show that the functional obtains an absolute maximum on that subset. If we

then take the minimum over all such subsets, we hope to find a critical value. Such

an approach is often called a minimax characterization of the critical value.

In addition to the geometry, however, we must also establish a second property,

which is known as the Palais-Smale compactness condition.

Definition 3 (PS). Let H be a Hilbert space. A functional F 2 C1(H,R) satisfies the

Palais-Smale compactness condition if each sequence {uk}1k=1, such that {F (uk)}1k=1

is bounded and rF (uk) ! 0 in H, is precompact in H.

In a finite number of dimensions, this condition is automatically satisfied if the

given functional is such that the inverse image of any compact set is itself compact.

In infinite dimension, the condition is more obviously necessary due to the more

complex notion of compactness. Establishing (PS) for cases where (a, b) 2 ⌃ often

requires the use of a generalized orthogonality condition. Specifically, a Landesman-

Lazer condition is often used. There are a great variety of Landesman-Lazer type

conditions. In finite dimension, we will use a Landesman-Lazer condition of the form,

Definition 4 (LLM). Let (a, b) 2 ⌃. For a bounded gradient field g : Rn ! Rn, if

every sequence, {x
k

}1k=1 ⇢ Rn, such that x
k

! x, a Fuc̆́ık eigenvector associated with

(a, b), is such that

lim
k!1

hg(x
k

),xi > 0,

then the Landesman-Lazer condition is satisfied.
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In the infinite dimensional case, we will use a Landesman-Lazer condition of the

form,

Definition 5 (LLD). Let (a, b) 2 ⌃ and g : R ! R be a bounded, continuous function

with G(u) :=
R u

0 g(t)dt. If every sequence {uk}1k=1 ⇢ H such that uk !  , a Fuc̆́ık

eigenfunction associated with (a, b), is such that


G+

Z

 >0

 dt+G�
Z

 <0

 dt

�
6= 0,

where

G+ = lim
u!+1

G(u)

u
and G� = lim

u!�1

G(u)

u
,

then the Landesman-Lazer condition is satisfied.

Establishing such a compactness condition is necessary in order to apply a stan-

dard Saddle Point Theorem. The theorem stated below is taken as a consequence of

Theorems 2.8 & 2.9 in [11].

Theorem 1.1. Let H be a Hilbert space, let X ⇢ H, and let E : H ! R be a C1 func-

tional. Let BR := {x 2 X : kxk  R}, let �0 : @BR ! H be a continuous function, let

� := {� : BR ! H : � 2 C(BR, H), �|@BR
⌘ �0}, and let c := inf�2� supx2BR

E(�(x)).

If supx2@BR
E(�0(x)) < c and if E satisfies (PS), then c is a critical value of E.

1.1 Preliminaries

Before beginning, we will define some basic notation which we will use throughout

the following chapters.

In the case where L is a di↵erential operator, we will make heavy use of two very

important function spaces, the Lebesgue space, L2 [0, 2⇡], and the Sobolev space,

4



W 1,2 [0, 2⇡]. Define

L2 [0, 2⇡] := {f : [0, 2⇡] ! R : f is measurable, and

Z 2⇡

0

f 2 dt < 1}.

In other words, L2 [0, 2⇡] is the space of square integrable function. The norm asso-

ciated with the space is

kfkL2 :=

✓Z 2⇡

0

f 2 dt

◆ 1
2

.

Using the definition of L2 [0, 2⇡], we can now define W 1,2 [0, 2⇡]. Let

W 1,2 [0, 2⇡] := {f 2 L2 [0, 2⇡] : f is absolutely continuous, and f 0 2 L2 [0, 2⇡]},

with associated norm,

kfkH =

✓Z 2⇡

0

f 2 dt+

Z 2⇡

0

(f 0)2 dt

◆ 1
2

.

We will henceforth refer to the space simply as H and the norm as k · kH , consistent

with a number of other texts. A rather important property of H, which we will make

use of quite often, is the fact that H has a compact embedding into both L2 and

C. This standard theorem taken from [5] can be found in many functional analysis

textbooks.

Theorem 1.2. There is a c > 0 such that |u(x) � u(y)|  c|x � y| 12 8x, y 2 [0, 2⇡]

and 8u 2 H.

An application of the Arzela-Ascoli theorem will then give that the inclusion map,

H ! C[0, 2⇡] is a compact operator. It follows that H ! L2[0, 2⇡] is also compact.

A full proof of the Sobolev Embedding theorem can be found in [5].

In the matrix case, we will be interested in vectors u 2 Rn. We will decompose our

space Rn = X�Y , where X and Y are defined as the span of eigenvectors of a matrix,
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A. It will often be helpful to decompose individual vectors, u 2 Rn such that u = x+y

with x 2 X and y 2 Y . Note, however, that x and y are assumed to have to same

dimension as that of the full space. Occasionally, it will also be helpful to consider

a sort of directional derivative, which we will denote rXF (u) · (x+ y) = rF (u) · x.

Similar notation will be used for a derivative in the Y direction.

Finally, we will use the same notation for the di↵erential equations case, except

our space will be H, and the decomposition H = X � Y is used, assuming that X is

finite dimensional.

6



Chapter 2: Matrix Case

In this first chapter, we consider the case L = A, where A is an n⇥ n symmetric

matrix and we let u 2 Rn.

We must first identify an appropriate functional. In general, we wish to find a

functional J such that for all u,v 2 Rn,

rJ(u) · v =
⌦
Au� au+ + bu�,v

↵

Lemma 1. Let J : Rn ! R be given by

J(u) =
1

2
hAu,ui � a

2

⌦
u+,u+

↵
� b

2

⌦
u�,u�↵

Then rJ(u) · v = hAu� au+ + bu�,vi.

Proof. Let f(x) = (x+)2. Then

f(x) =

⇢
x2 x � 0
0 x < 0

Clearly, f is continuous on all of R and f is di↵erentiable for any x 6= 0. Moreover,

at zero, we see that,

lim
x!0�

f(x)� f(0)

x� 0
= lim

x!0�

0

x

= 0.

Also,

lim
x!0+

f(x)� f(0)

x� 0
= lim

x!0�

x2

x

= lim
x!0�

x

= 0.

7



So,

lim
x!0�

f(x)� f(0)

x� 0
= lim

x!0+

f(x)� f(0)

x� 0
= 0,

and hence f is a continuously di↵erentiable function, with

f 0(x) =

⇢
2x x � 0
0 x < 0

.

Written in another form, f 0(x) = 2x+.

Now, let h(x) = (x�)2. Then

h(x) =

⇢
0 x � 0
x2 x < 0

Similarly, h(x) = (x�)2 is continuously di↵erentiable, with h0(x) = �2x�. The nega-

tive sign comes from an application of the chain rule.

If we now consider the quantity hu±,u±i we note that

⌦
u±,u±↵ =

�
u±
1

�2
+
�
u±
2

�2
+ · · ·+

�
u±
n

�2
,

is continuously di↵erentiable in each variable, so r (hu±,u±i) = ±2u±.

As for the one remaining term, note that

lim
ku�u0k!0

����
hAu,ui � hAu

0

,u
0

i � 2 hAu
0

,u� u
0

i
ku� u

0

k

����

= lim
ku�u0k!0

����
hAu,ui � hAu

0

,u
0

i � hAu
0

,ui � hAu
0

,ui+ hAu
0

,u
0

i+ hAu
0

,u
0

i
ku� u

0

k

����

= lim
ku�u0k!0

����
hA(u� u

0

),u� u
0

i � hAu
0

,u� u
0

i
ku� u

0

k

����

= lim
ku�u0k!0

����
hAu� u

0

,u� u
0

i
ku� u

0

k

����

= 0.
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So, hAu,ui is di↵erentiable, with r(hAu,ui) = 2Au.

Therefore, we may conclude that rJ(u) · v = hAu� au+ + bu�,vi.

We now examine the geometry of the functional J on certain subsets of Rn. We

begin by showing a lemma, which will be of use in establishing properties of the func-

tional. It should be noted here that, while the lemma may seem arbitrary and might

not be the most logical way to proceed upon first seeing this type of problem, after

repeated estimations of the same type, it was determine that this single inequality

would help establish many of the desired properties.

Lemma 2. Let A be a real-valued, n⇥ n symmetric matrix with eigenvalues,

�1  �2  . . .  �n, and corresponding eigenvectors {v1,v2, . . . ,vn}. Given a such

that �k < a < �k+1 for some k and b > a, define X := span {v1,v2, . . . ,vk} and

Y := span {vk+1,vk+2, . . . ,vn}. Let J : Rn ! R be given by

J(u) =
1

2
hAu,ui � a

2

⌦
u+,u+

↵
� b

2

⌦
u�,u�↵ .

Let s = b�a > 0. Then there is an ✏ > 0 such that, for all x
1

,x
2

2 X and y
1

,y
2

2 Y ,

hrJ(x
2

+ y
2

)� rJ(x
1

+ y
1

),x
2

� x
1

i

 �✏kx
2

� x
1

k2 + s(kx
2

� x
1

k+ ky
2

� y
1

k)ky
2

� y
1

k.

Proof. Let

D = hrJ(x
2

+ y
2

)�rJ(x
1

+ y
1

),x
2

� x
1

i .
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This gives

D =
⌦
A(x

2

+ y
2

)� a(x
2

+ y
2

)+ + b(x
2

+ y
2

)�,x
2

� x
1

↵

�
⌦
A(x

1

+ y
1

)� a(x
1

+ y
1

)+ + b(x
1

+ y
1

)�,x
2

� x
1

↵

=
⌦
A(x

2

+ y
2

)� a(x
2

+ y
2

) + s(x
2

+ y
2

)�,x
2

� x
1

↵
(since u = u+ � u�)

�
⌦
A(x

1

+ y
1

)� a(x
1

+ y
1

) + s(x
1

+ y
1

)�,x
2

� x
1

↵

= hA(x
2

� x
1

)� a(x
2

� x
1

),x
2

� x
1

i+ hA(y
2

� y
1

)� a(y
2

� y
1

),x
2

� x
1

i

+ s
⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�,x
2

� x
1

↵

= hA(x
2

� x
1

),x
2

� x
1

i � a hx
2

� x
1

,x
2

� x
1

i (since X ? Y )

+ s
⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�,x
2

� x
1

↵
.

If we then make the substitution x
2

� x
1

= (x
2

+ y
2

)� (x
1

+ y
1

)� (y
2

� y
1

),

and we note that

⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�, x
2

� x
1

i

=
⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�, (x
2

+ y
2

)� (x
1

+ y
1

)
↵

�
⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�,y
2

� y
1

↵

 �
⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�,y
2

� y
1

↵
,

since f(x) = x� is a monotone decreasing function. By application of the Cauchy-

Schwarz and triangle inequalities, coupled with the fact that kv� �w�k  kv �wk

we get

10



D  hA(x
2

� x
1

),x
2

� x
1

i � a hx
2

� x
1

,x
2

� x
1

i

� s
⌦
(x

2

+ y
2

)� � (x
1

+ y
1

)�,y
2

� y
1

↵

 hA(x
2

� x
1

),x
2

� x
1

i � a hx
2

� x
1

,x
2

� x
1

i

+ sk(x
2

+ y
2

)� � (x
1

+ y
1

)�kky
2

� y
1

k (2.1)

 hA(x
2

� x
1

),x
2

� x
1

i � a hx
2

� x
1

,x
2

� x
1

i

+ sk(x
2

+ y
2

)� (x
1

+ y
1

)kky
2

� y
1

k

 hA(x
2

� x
1

),x
2

� x
1

i � a hx
2

� x
1

,x
2

� x
1

i

+ s [kx
2

� x
1

k+ ky
2

� y
1

k] ky
2

� y
1

k

Since a > �k, choose ✏ such that a = (1 + ✏)�k. Then

hA(x
2

� x
1

),x
2

� x
1

i � a hx
2

� x
1

,x
2

� x
1

i  �kkx2

� x
1

k2 � (1 + ✏)�kkx2

� x
1

k2

 �✏kx
2

� x
1

k2 (2.2)

since �k is the largest eigenvalue acting on elements of X, and hence hAx,xi 

�k hx,xi for all x 2 X.

Combining (2.1) and (2.2), we get the desired inequality,

D  �✏kx
2

� x
1

k2 + s [k(x
2

� x
1

)k+ k(y
2

� y
1

)k] ky
2

� y
1

k (2.3)

Now that we have established this important inequality, we proceed to prove the

properties of the functionals J and J̃ .

Theorem 2.1. Under the hypotheses of Lemma 2,

1. For fixed y 2 Y , J is convex and anticoercive on the set y +X and achieves a

unique maximum.
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2. There exists a continuous function, r : Y ! X such that,

(a) J̃(y) := J(r(y) + y) = max{J(y + x) : x 2 X},

(b) J̃ 2 C1(Y,R), and

(c) given t � 0, r(ty) = tr(y) and J̃(ty) = t2J̃(y) 8y 2 Y .

Proof. SinceX and Y are complementary subspaces of Rn, then for any vector u 2 Rn,

we can write u = x+ y where x 2 X and y 2 Y . Now, we consider J restricted to

the set y +X = {y + x : x 2 X}, where y is some fixed element of Y , and examine

D, a di↵erence quotient for rJ .

With y 2 Y fixed and x
1

,x
2

2 X, note that (2.3) simplifies to

hrJ(x
2

+ y)�rJ(x
1

+ y),x
2

� x
1

i  �✏kx
2

� x
1

k2, (2.4)

which shows that J is strictly concave on y +X.

Examining the value of J on y +X, we note that, since X and Y are orthogonal

and X and Y are invariant with respect to the matrix A (i.e., Ax 2 X 8x 2 X and

Ay 2 Y 8y 2 Y ),

2J(x+ y) = hA(x+ y),x+ yi � a
⌦
(x+ y)+, (x+ y)+

↵

� b
⌦
(x+ y)�, (x+ y)�

↵

= hA(x+ y),x+ yi � a hx+ y,x+ yi

� s
⌦
(x+ y)�, (x+ y)�

↵

= hAx,xi+ hAy,yi � a hx, (x)i

� a hy,yi � s
⌦
(x+ y)�, (x+ y)�

↵

 hAx,xi � a hx,xi+ hAy,yi � a hy,yi

 �kkxk2 � akxk2 + C

= (�k � a)kxk2 + C,
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for some C � 0, where C comes from inner products dealing only with y 2 Y ,

which is fixed. Hence, since �k < a, J is bounded above and anticoercive on y +X.

Now, let M = supX J(x+ y) < 1. Since J(x+ y) is anticoercive, then there exists

R > 0 such that M = supkxkR J(x+ y). J is a continuous functional, and so it

achieves a maximum on the compact set kxk  R. The maximum is unique since if

x
1

,x
2

2 X are both maxima, then 0 = hrJ(x
1

+ y)�rJ(x
2

+ y),x
1

� x
2

i < 0, a

contradiction. Hence the first claim of the theorem holds.

Define a function, r : Y ! X, such that r(y) 2 X is the unique element of X such

that J is maximized on y +X. We wish to show that r(y) is a continuous function.

We first note that

hrJ(r(y
2

) + y
2

)�rJ(r(y
1

) + y
1

), r(y
2

)� r(y
1

)i = 0,

since r(y
1

) and r(y
2

) are both in X and are maxima on the sets y
1

+X and y
2

+X,

respectively. Substituting this fact into (2.3) and making the substitutions x
1

= r(y
1

)

and x
2

= r(y
2

), we conclude that

✏

s
kr(y

2

)� r(y
1

)k2 � kr(y
2

)� r(y
1

)kky
2

� y
1

k  ky
2

� y
1

k2,

and hence,

kr(y
2

)� r(y
1

)k 
 
s+

p
s2 + 4✏s

2✏

!
ky

2

� y
1

k, (2.5)

so r(y) is a continuous function.

Now, let J̃ : Y ! Y be defined such that J̃(y) := J(r(y) + y). Note that

J̃(y
2

)� J̃(y
1

) = J(r(y
2

) + y
2

)� J(r(y
1

) + y
1

)

= (J(r(y
2

) + y
2

)� J(r(y
2

) + y
1

)) + (J(r(y
2

) + y
1

)

�J(r(y
1

) + y
1

))

 (J(r(y
2

) + y
2

)� J(r(y
2

) + y
1

)) ,

13



since J(r(y
1

) + y
1

) is the maximum at y
1

. Then

J̃(y
2

)� J̃(y
1

)  rJ(r(y
2

) + y
1

) · (y
2

� y
1

) + o(ky
2

� y
1

k) (J 2 C1(Rn,R))

= (rJ(r(y
1

) + y
1

) +rJ(r(y
2

) + y
1

)

�rJ(r(y
1

) + y
1

)) · (y
2

� y
1

) + o(ky
2

� y
1

k)

= (rJ(r(y
1

) + y
1

)) · (y
2

� y
1

) + (rJ(r(y
2

) + y
1

)

�rJ(r(y
1

) + y
1

)) · (y
2

� y
1

) + o(ky
2

� y
1

k)

= rJ(r(y
1

) + y
1

) · (y
2

� y
1

) + o(ky
2

� y
1

k), (2.6)

since

lim
ky2�y1k!0

����
(rJ(r(y

2

) + y
1

)�rJ(r(y
1

) + y
1

)) · (y
2

� y
1

)

ky
2

� y
1

k

����

 lim
ky2�y1k!0

rJ(r(y
2

) + y
1

)�rJ(r(y
1

) + y
1

)

= 0,

by the continuity of bothrJ and r. If, instead of adding and subtracting J(r(y
2

)+y
1

)

in the first step of the above inequality, we had added and subtracted J(r(y
1

) + y
2

),

we would have concluded that

J̃(y
2

)� J̃(y
1

) � rJ(r(y
1

) + y
1

) · (y
2

� y
1

) + o(ky
2

� y
1

k).

Combining these two results, we conclude that

J̃(y
2

)� J̃(y
1

) = rJ(r(y
1

) + y
1

) · (y
2

� y
1

) + o(ky
2

� y
1

k),

and therefore J̃ 2 C1(Y,R) and rJ̃(y) = rY J(r(y) + y).

Finally, note that if t 2 R is given, then for t � 0,

J(tu) =
1

2
(hA(tu), tui � a

⌦
(tu)+, (tu)+

↵
+ b
⌦
(tu)�, (tu)�

↵
)

=
1

2
(t2 hA(u),ui � t2a

⌦
(u)+, (u)+

↵
+ t2b

⌦
(u)�, (u)�

↵
)

= t2J(u), (2.7)
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since positive constants can be factored out of (·)+ and (·)�.

Given (2.7), consider

J(x+ ty) = J
⇣
t
⇣
(
x

t
+ y

⌘⌘

= t2J
⇣x
t
+ y

⌘
(2.8)

Since J(x + ty) is maximized at x = r(ty) and t2J(x
t
+ y) will be maximized at

x = tr(y), then r(ty) = tr(y). Finally, we combine these results to see that,

J̃(ty) = J(r(ty) + ty)

= J(tr(y) + ty)

= t2J(r(y) + y)

= t2J̃(y).

Having established the appropriate geometry of the function, we may now show

a variational characterization of the Fuc̆́ık spectrum. This characterization exhibits

that the characterization of the Fuc̆́ık spectrum given by Castro in [2] for a more

general class of operators is applicable to our case.

We begin with several lemmas which relate critical points of J̃
���
kyk=1

to critical

points of the unrestricted J̃ , and critical points of J̃ to critical points of J .

Lemma 3. Given y
0

2 Y with ky
0

k = 1, r J̃(y
0

)
���
kyk=1

= 0 and J̃(y
0

) = 0 if and

only if rJ̃(y
0

) = 0.

Proof. Let y
0

2 Y such that ky
0

k = 1 and let V := {v 2 Rn : hv,y
0

i = 0}. Then

every y 2 Y may be represented as y = ty
0

+ v for some t 2 R and v 2 V . Note

15



that the curve �(t) = ty0+v

kty0+vk , with y
0

2 Y and v 2 V both fixed, is a smooth curve

on the set {y 2 Y : kyk = 1} with �0(0) = v. First note that

d

dt

⇣
J̃(�(t))

⌘����
t=0

= rJ(�(0)) · �0(0)

= rJ(y
0

) · v

Similarly, note that

d

dt

⇣
J̃(ty

0

)
⌘����

t=1

=
d

dt

⇣
t2J̃(y

0

)
⌘����

t=1

= 2J̃(y
0

)

If we now represent y 2 Y as y = ty
0

+ v, then we see that rJ̃(y
0

) · (ty
0

+ v) =

2tJ̃(y
0

) + rJ̃(y
0

) · v. If J̃(y
0

) = 0 and rJ̃(y
0

) · v = 0 8v 2 V , then clearly

rJ̃(y
0

) · y = 0 8y 2 Y . If rJ̃(y
0

) · y = 0 8y 2 Y , then clearly it must be true for

y = y
0

. In that case, we see that v = 0, so 0 = rJ̃(y
0

) ·y
0

= 2tJ̃(y
0

) 8t > 0. Hence

J̃(y
0

) = 0, and therefore we conclude that rJ̃(y
0

) = 0.

Lemma 4. rJ̃(y
0

) · y = 0 8y 2 Y if and only if rJ(r(y
0

) + y
0

) · u = 0 8u 2 Rn.

Proof. Assume rJ̃(y
0

) · y = 0 8y 2 Y . Taking the gradient of J , we see that

rJ(r(y
0

) + y
0

) · u = rXJ(r(y0

) + y
0

) · x+rY J(r(y0

) + y
0

) · y (2.9)

Since J achieves a maximum with respect to X, then rXJ(r(y0

) + y
0

) · x = 0.

Substituting this in to (2.9), we see that

rJ(r(y
0

) + y
0

) · u = rY J(r(y0

) + y
0

)y

= rJ̃(y)

The other direction of the proof follows from (2.9) and the fact that critical points

in the X-direction are unique from Theorem 2.1.

Therefore, the lemma holds.
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Now, using these lemmas, we may provide a variational characterization of the

Fuc̆́ık spectrum. For the statement and proof of this theorem, we adopt the notation

J̃b, to highlight the fact that the functional J̃ takes b as a parameter. There is no

di↵erence between J̃ and J̃b, but given the importance of the reliance of J̃ on b to this

proof, we have adopted a di↵erent notation. Furthermore, this notation is consistent

with that used by Castro in [2]

Theorem 2.2. Let �k < a < �k+1 and define

b(a) := sup{b � a : inf
kyk=1

J̃b(y) > 0}.

Then,

1. (a, b(a)) 2 ⌃, as defined in (1.2), or b(a) = 1.

2. if a < b < b(a), then (a, b) /2 ⌃, and

3. b(a) � �k+1.

Proof. Assume b(a) < 1 and let h(b) := infkyk=1 J̃b(y). It is clear from the definition

of J̃b that h(b) is nonincreasing and continuous in b. Furthermore, it is the case that

h(b(a)) = 0, since if h(b(a)) = ✏ > 0, then we can choose some b1 > b(a) so that

h(b1) =
✏
2 , contradicting the definition of b(a). We can similarly rule out h(b(a)) < 0.

If h(b(a)) = 0, then for some y
0

2 Y with ky
0

k, J̃b(y0

= 0 is the minimum value

and is achieved at y
0

. This y
0

is guaranteed to exists due to the compactness of the

set {y 2 Y : kyk = 1} and the continuity of J̃b. So, J̃b

���
kyk=1

has a critical point

with critical value is zero. By Lemma 3 this corresponds to a critical point for the

unrestricted J̃b functional. Since critical points of J̃b correspond to critical points of

Jb by Lemma 4 and the critical point is nontrivial since kyk = 1, then (a, b(a)) 2 ⌃.

If b < b(a), then h(b) 6= 0. Since h(b) 6= 0, then the critical points of J̃b

���
kyk=1

do
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not correspond to critical points of the unrestricted functional J̃b. So, (a, b) is not

a critical point of Jb and hence (a, b) /2 ⌃. Finally, we show that b(a) � �k+1 by

assuming to the contrary that a < b(a) < �k+1. Let  = �k+1 � a > 0. Then 8y 2 Y ,

J̃b(y) = Jb(r(y) + y)

� Jb(y)

=
1

2
hAy,yi � 1

2
a
⌦
y+,y+

↵
� 1

2
b
⌦
y�,y�↵

� 1

2
�k+1kyk2 �

1

2
(�k+1 � )kyk2 (�k+1 is the smallest eigenvalue on Y.)

=
1

2
kyk2

> 0.

Hence, infkyk=1 J̃b(y) > 0, a contradiction to our definition of b(a), so b(a) � �k+1.

Now, using the variational approach, we wish to identify a functional, E(u), so

that rE(u) = 0 is exactly (1.1). Let

E(u) = J(u)�G(u), where rG(u) = g(u).

We easily see that, in light of Lemma 1, this is the appropriate functional.

Consider the functional E(u) restricted to the subspace X. If we assume that

g(u) is bounded, then, due to (2.4), we can conclude that

E(x)  �✏kxk2 +Mkxk, (2.10)

and therefore E(x) is anticoercive on X.

Now consider E(x) restricted to the set Y := {r(y) + y : y 2 Y }. Note first that

J̃(y) = J̃

✓
kyk y

kyk

◆

= kyk2J̃(ŷ), (2.11)
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and so if infkyk=1 J̃(y) � ✏, we conclude that J̃(y) � ✏kyk2.

Now, recalling that r(y) satisfies (2.5), we can rearrange (2.5) to show that

kr(y)k  M 0kyk, for some M 0 > 0.

Combining these results, we see that

E(r(y) + y) � ✏kyk2 �Mkr(y) + yk

� ✏kyk2 �M (kr(y)k+ kyk) (2.12)

� ✏kyk2 �M(M 0 + 1)kyk.

if infkyk=1 J̃b(y) � ✏. It follows that there exists some R su�ciently large such that,

sup
kxk=R

E(x) < inf
y2Y

E(y).

On the issue of existence of solutions, we need also to establish an appropriate

compactness condition for our functional. In particular, we wish to show that the

functional satisfies (PS), which depends on whether our parameter values are in the

Fuc̆́ık spectrum. When (a, b) 2 ⌃, we show that (LLM) is su�cient to establish

compactness.

Theorem 2.3. If (a, b) /2 ⌃ or if both (a, b) 2 ⌃ and (LLM) is satisfied then the

functional E : Rn ! R defined by

E(u) =
1

2
hAu,ui � a

2

⌦
u+,u+

↵
� b

2

⌦
u�,u�↵� hG(u),ui

satisfies (PS).

Proof. We wish to show that, given {x
k

}1k=1 such that {E(x
k

)}1k=1 is bounded and

rE(x
k

) ! 0, {x
k

}1k=1 has a convergent subsequence. Since we are working in Rn, it

su�ces to show that {x
k

}1k=1 is bounded.
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Assume to the contrary that {xk}1k=1 is not a bounded sequence. Then without

loss of generality, kx
k

k ! 1 so let bx
k

= xk
kxkk

. Then there exists a subsequence,

{bx
k

}1k=1 and an bx such that bx
k

! x̂. By the continuity of the norm, kx̂k = 1.

Dividing the functional equation through by kx
k

k, we see that

rE(x
k

)

kx
k

k = Ax̂
k

� ax̂+
k

+ bx̂�
k

� g(x
k

)

kx
k

k .

Letting k ! 1, we get that

0 = Ax̂� ax̂+ + bx̂� (2.13)

a contradiction if (a, b) /2 ⌃. If (a, b) 2 ⌃, we note that x̂ is an eigenvector, and then

we consider the equation

hrE(x̂
k

), x̂i = hAx̂
k

, x̂i � a
⌦
x̂+
k

, x̂
↵
+ b
⌦
x̂�
k

, x̂
↵
� hg(x̂

k

), x̂i

Since A is symmetric and x̂ satisfies (2.13), we may rewrite the equation as

hrE(x̂
k

), x̂i = a
�⌦
x̂
k

, x̂+
↵
�
⌦
x̂+
k

, x̂
↵�

� b
�⌦
x̂
k

, x̂�↵�
⌦
x̂�
k

, x̂
↵�

� hg(x̂
k

), x̂i

Taking a limit of each side as k ! 1 and using the continuity of (·)±, we conclude

that

lim
k!1

hg(x̂
k

), x̂i = 0,

which is a contradiction of (LLM). Therefore, {x
k

}1k=1 is a bounded sequence in Rn

which implies that it has a converging subsequence. So {x
k

}1k=1 satisfies (PS).

Now, given properties of the functional E, our variational characterization, and

the Palais-Smale compactness condition, now we need only show one last lemma

before applying the saddle point theorem.
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Lemma 5. Let

� :=
�
� : BR(0) ✓ X ! H : � |@BR(0) (x) = x, � 2 C

 
.

Then,

inf
�2�

sup
x2BR

E(�(x)) > sup
x2@BR

E(x).

Proof. Let � : BR(0) ✓ X ! H be a continuous function such that �(@BR(0)) =

{(x,y) : y = 0, kxk = R}. Let �(x) = �X(x) + �Y (x) where �X(x) 2 X and

�Y (x) 2 Y . In order to show that �(BR(0)) \ Y 6= ?, we wish to find x 2 X so that

�X(x) = r(�Y (x)). Let F (x) = �X(x)�r(�Y (x)). Now, let h(x, t) = tF (x)+(1� t)x.

Note first that if x 2 @BR(0), then F (x) = x 6= 0, so h(x, t) = tx + (1 � t)x = 1 for

x 2 @BR(0). Then deg(F,BR(0), 0) = deg(I, BR(0), 0) = 1, and hence,

inf
�2�

sup
x2BR

E(�(x)) � inf
y2Y

E(y)

> sup
x2@BR

E(x)

Theorem 2.4. Under the hypotheses of Theorem 2.3, there exists a solution to (1.1),

where g(u) is a bounded gradient vector field.

Proof. Recall that the functional E satisfies (PS) due to Theorem 2.3 and that

inf
�2�

sup
x2BR

E(�(x)) > sup
x2@BR

E(x),

due to Lemma 5. Hence by the saddle point theorem, if

� :=
�
� : BR(0) ✓ X ! H : � |@BR(0) (x) = (x, 0), � 2 C

 

and

d := inf
�2�

sup
x2X

E(�(x)),
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then d is a critical value. Hence, for some u
0

2 Rn, rE(u
0

) · v = 0 for all v 2 Rn.

Hence, rE(u
0

) ⌘ 0, so u
0

2 Rn is a solution to Au� au+ � bu� � g(u) = 0.
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Chapter 3: ODE Case

In the di↵erential equations case, the problem of interest is the boundary value

problem,
8
<

:

�u00 = au+ � bu� + g(u)
u(0) = u(2⇡)
u0(0) = u0(2⇡)

(3.1)

where u+(x) = max{u(x), 0} and u�(x) = max{�u(x), 0}.

The method of proving existence of solutions follows just as it did in the previous

chapter. It is worth noting that much of the geometry of the functional is exactly as it

was before, with only a few exceptions which will be noted. Where the computations

are nearly identical, the reader will be referred to the computations in the previous

chapter, and only the final result will be given. The major di↵erence in the ODE

case is proving the Palais-Smale condition, which turns out to be substantially more

di�cult. One might expect this, given that we are now trying to prove a compactness

condition for an infinite dimensional space.

Lemma 6. Let J : H ! R be given by

J(u) =
1

2

Z 2⇡

0

(u0)2 dt� a

2

Z 2⇡

0

(u+)2 dt� b

2

Z 2⇡

0

(u�)2 dt.

Then

rJ(u) · v =

Z 2⇡

0

u0v0 dt� a

Z 2⇡

0

u+v dt+ b

Z 2⇡

0

u�v dt.

This lemma is justified by a more general theorem.

Theorem 3.1. Let g : R ! R be a C1(R) function. Consider F : H ! R given by

F (u) =
R 2⇡

0 g(u) dt. Then F is C1(R) with rF · v =
R 2⇡

0 g0(u)v dt.
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Proof. Note first that
����F (u)� F (u0)�

Z 2⇡

0

g0(u0)(u� u0) dt

���� =
����
Z 2⇡

0

g(u)� g(u0)� g0(u0)(u� u0) dt

����

=

����
Z 2⇡

0

g0(ũ)(u� u0)� g0(u0)(u� u0) dt

���� ,

where ũ(x) is the function guaranteed by the Mean Value Theorem such that ũ(x) is

between u(x) and u0(x) and g(u)� g(u0) = g0(ũ(x))(u� u0). Then

����F (u)� F (u0)�
Z 2⇡

0

g0(u0)(u� u0) dt

���� 
Z 2⇡

0

|g0(ũ)� g0(u0)| |u� u0| dt

 kg0(ũ)� g0(u0)kL2ku� u0kL2

Therefore,

lim
ku�u0kH!0

���F (u)� F (u0)�
R 2⇡

0 g0(u)v dt
���

ku� u0kH
 lim

ku�u0kH!0

kg0(ũ)� g0(u0)kL2ku� u0kL2

ku� u0kL2

 lim
ku�u0kH!0

kg0(ũ)� g0(u0)kL2

= 0,

since ũ(x) is between u(x) and u0(x) and ũ ! u0 uniformly in C[0, 2⇡]. Hence, F is

di↵erentiable with rF (u) · v =
R 2⇡

0 g0(u)v dt.

This theorem allows us to reduce the problem of finding a derivative of our func-

tional to a single-variable problem. Therefore, recall that if f(x) = 1
2(x

±)2, then

f 0(x) = ±x±. Therefore J is di↵erentiable with derivative

rJ(u) · c =
Z 2⇡

0

u0v0 dt� a

Z 2⇡

0

u+v dt+ b

Z 2⇡

0

u�v dt

As before, we wish to establish an inequality which will make the proofs of several

parts of the theorem quite simple.

24



Lemma 7. Choose ✏ such that a = (1 + ✏)�k. Let � = min
�

✏
2�k,

✏
2

 
and let D =

hrJ(x2 + y2)�rJ(x1 + y1), x2 � x1i. Then,

D  ��kx2 � x1k2H + s(kx2 � x1kL2 + ky2 � y1kL2)ky2 � y1kL2

Proof. We proceed just as in the proof of Lemma 2. The same calculations as before

will show that

D  kx0
2 � x0

1k2L2 � akx2 � x1kL2 + s(kx2 � x1kL2 + ky2 � y1kL2)ky2 � y1kL2

Now we choose ✏ such that a = (1 + ✏)�k. If we then examine the first piece of the

right-hand side, we find that

kx0
2 � x0

1k2L2 =

Z 2⇡

0

(x0
2 � x0

1)
2 dt (3.2)

=
⇣
1 +

✏

2

⌘Z 2⇡

0

(x0
2 � x0

1)
2 dt� ✏

2

Z 2⇡

0

(x0
2 � x0

1)
2 dt


⇣
1 +

✏

2

⌘
�k

Z 2⇡

0

(x2 � x1)
2 dt� ✏

2

Z 2⇡

0

(x0
2 � x0

1)
2 dt (3.3)

since �k is the largest eigenvalue on X. Now, making the substitution a = (1 + ✏)�k,

we note that

kx0
2 � x0

1k2L2 � akx2 � x1kL2 
⇣
1 +

✏

2

⌘
�k

Z 2⇡

0

(x2 � x1)
2 dt� ✏

2

Z 2⇡

0

(x0
2 � x0

1)
2 dt

� (1 + ✏)�k

Z 2⇡

0

(x2 � x1)
2 dt

= � ✏

2
�k

Z 2⇡

0

(x2 � x1)
2 dt� ✏

2

Z 2⇡

0

(x0
2 � x0

1)
2 dt

 ��

✓Z 2⇡

0

(x2 � x1)
2 dt+

Z 2⇡

0

(x0
2 � x0

1)
2 dt

◆

= ��kx2 � x1kH .
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Substituting this back into the original inequality, we conclude that

D  ��kx2 � x1k2H + s(kx2 � x1kL2 + ky2 � y1kL2)ky2 � y1kL2

as claimed.

Now we proceed as before with a theorem about the properties of a functional J.

We recall that the eigenvectors of the second derivative operator are {sin(nx)} with

corresponding eigenvalues {n2} for n a non-negative integer.

Theorem 3.2. Let L be the second derivative operator with eigenvalues �1  �2 

. . .  �n  . . . and corresponding eigenfunctions {�1,�2, . . . ,�n, . . .}. Given �k < a <

�k+1 define X := span {�1,�2, . . . ,�k} and Y := span {�k+1,�k+2, . . . ,�n, . . .} = X?.

Let J : H ! R be defined as

J(u) =
1

2

Z 2⇡

0

(u0)2 dt� a

2

Z 2⇡

0

(u+)2 dt� b

2

Z 2⇡

0

(u�)2 dt

Then,

1. For fixed y 2 Y , J is concave and anticoercive on the set y +X and achieves a

unique maximum.

2. There exists a continuous function, r : Y ! X such that,

(a) J̃(y) = J(r(y) + y) = max{J(y + x) : x 2 X},

(b) J̃ 2 C1(Y,R), and

(c) given t � 0, r(ty) = tr(y) and J̃(ty) = t2J̃(y) 8y 2 Y .

Proof. As in (2.4), we may conclude that that for fixed y 2 Y ,

hrJ(x2 + y)�rJ(x1 + y), x2 � x1iL2  ��kx2 � x1k2H ,

and hence we conclude that J is concave and anticoercive on the set y +X.
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Similarly, to show that r(y) is a continuous function, we use the same substitution

as in (2.5) (along with the fact that k · kL2  k · kH ) and conclude that,

kr(y2)� r(y1)kH 
 
s+

p
s2 + 4✏s

2✏

!
ky2 � y1kL2 . (3.4)

So r(y) is continuous in L2. Note also that if {yk}1k=1 is a bounded sequence inH, then

{yk}1k=1 has a convergent subsequence in L2, call it {yki}1i=1, which by the previous

inequality gives us that {r(yki)}1i=1 converges in H.

The proofs of parts 2(b) and 2(c) of the theorem follow exactly as in (2.6), (2.7),

and (2.8). These two final parts conclude the proof of the theorem.

The variational characterization exhibited in 2.2 remains almost exactly the same,

with one detail needing to be checked. In the finite dimensional case, we used the

compactness of the set {y 2 Rn : kyk = 1} to show that infkyk=1 J̃b(y) was achieved

at some y with kyk = 1. In the infinite dimensional case, we must argue that such a

y exists.

Let {yk}1k=1 be a minimizing sequence with kykkL2 = 1 such that J̃(yn) &

infkykL2=1 J̃b(y). Since {yk}1k=1 is a minimizing sequence, then {2J̃b(yk)}1k=1 is bounded

above. Let M > 2J̃b(yk) for all k. Then,

M > 2J̃b(yk)

� 2Jb(yk)

=

Z 2⇡

0

(y0k)
2
dt� a

Z 2⇡

0

�
yk

+
�2

dt� b

Z 2⇡

0

�
yk

��2 dt.

Since kykkL2 = 1, then the two rightmost integrals are bounded, and hence

Z 2⇡

0

(y0k)
2
dt < 1.
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Therefore, kykkH is bounded for all k. Since H embeds compactly in C[0, 2⇡], there

must be a subsequence of {yk}1k=1 that converges in C[0, 2⇡]. Also, without loss

of generality, r(yk) ! r(y) in H by (3.4). We also note that, due to weak lower

semicontinuity,

lim inf
k!1

Z 2⇡

0

((r(yk) + yk)
0)2 dt �

Z 2⇡

0

((r(y) + y)0)2 dt.

Hence,

2 inf
kykL2=1

J̃b(y) = lim inf
k!1

✓Z 2⇡

0

((r(yk) + yk)
0)2 dt� a

Z 2⇡

0

�
(r(yk) + yk)

+�2 dt

�b

Z 2⇡

0

�
(r(yk) + yk)

��2 dt

◆

�
Z 2⇡

0

((r(y) + y)0)2 dt� a

Z 2⇡

0

�
(r(y) + y)+

�2
dt

� b

Z 2⇡

0

�
(r(y) + y)�

�2
dt

= 2J̃b(y).

Hence, infkykL2=1 J̃b(y) = 2J̃b(y) for some y 2 H.

Now, the only di�culty remaining is establishing the Palais-Smale condition.

Theorem 3.3. If (a, b) /2 ⌃ or if (a, b) 2 ⌃ and (LLD) is satisfied, then the functional

E : H ! R defined by

E(u) =
1

2

Z 2⇡

0

(u0)2 dt� a

2

Z 2⇡

0

(u+)2 dt� b

2

Z 2⇡

0

(u�)2 dt�
Z 2⇡

0

G(u) dt (3.5)

satisfies (PS).

First, suppose that {uk}1k=1 is a sequence such that {E(uk)}1k=1 is bounded and

rE(uk) ! 0 in H. We wish to show that kukk1 is bounded. Suppose to the contrary
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that kukk1 ! 1. Then let vk =
uk

kukk1
. Note that if we divide the energy functional

through by kukk21, we get

E(uk)

kukk21
=

1

2

Z 2⇡

0

(v0k)
2 dt� a

2

Z 2⇡

0

(vk
+)2 dt� b

2

Z 2⇡

0

(vk
�)2 dt�

Z 2⇡

0

G(uk)

kukk21
dt

Note that if we take a limit, the term E(uk)
kukk21

! 0 since {E(uk)}1k=1 is bounded and

Z 2⇡

0

G(uk)

kukk21
dt ! 0

since G0 = g is a bounded function, and thus |G(uk)|  C |uk|, where |g(uk)|  C

8uk. Also note that kv±k k1  1, so
R 2⇡

0 (v±)2 dt is likewise bounded. Therefore, we

may conclude that

1

2

Z 2⇡

0

(v0k)
2 dt < +1,

and therefore kvkkH is bounded.

Thus, without loss of generality, there exists  2 H such that vk *  in H and

vk !  in L2 [0, 2⇡] and C [0, 2⇡], by Alaoglu’s theorem and a standard compact

embedding theorem. We know that k k1 = 1 since kvkk1 = 1 8k, so  is nontrivial.

Using this convergence, we can now show that

0 = lim
k!1

rE(uk)

kukk1
· w (3.6)

= lim
k!1

Z 2⇡

0

v0kw
0 dt� a

Z 2⇡

0

vk
+w dt+ b

Z 2⇡

0

vk
�w dt�

Z 2⇡

0

g(uk)

kukk1
w dt

�
(3.7)

=

Z 2⇡

0

 0w0 dt� a

Z 2⇡

0

 +w dt+ b

Z 2⇡

0

 �w dt (3.8)

Thus,  is a weak solution to the boundary value problem

8
<

:

�u00 = au+ � bu�

u(0) = u(2⇡)
u0(0) = u0(2⇡)

(3.9)
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and  is a non-trivial Fuc̆́ık eigenfunction. If (a, b) /2 ⌃, then this is a contradiction

and kukk1 is bounded as claimed. If (a, b) 2 ⌃, then consider the quantity,

2E(uk)�rE(uk) · uk

kukk1
= �2

Z 2⇡

0

G(uk)

kukk1
dt+

Z 2⇡

0

g(uk)
uk

kukk1
dt. (3.10)

Note first that, by assumption

lim
k!1

2E(uk)�rE(uk) · uk

kukk1
= 0.

We can rewrite the first term on the right hand side of (3.10) so that

lim
k!1

Z 2⇡

0

G(uk)

kukk1
dt = lim

k!1

Z 2⇡

0

G(uk)

uk

uk

kukk1
dt

= lim
k!1

Z

 <0

G(uk)

uk

uk

kukk1
dt+

Z

 >0

G(uk)

uk

uk

kukk1
dt

= G�
Z

 <0

v dt+G+

Z

 >0

v dt (3.11)

Now, we need only to determine what the last integral in (3.10) converges to in order

to reach a contradiction, which will show that kukk1 is bounded. We begin with a

lemma.

Lemma 8. Let E : H ! R be defined as before, and let {uk}1k=1 be a sequence such

that {E(uk)}1k=1 is bounded and rE(uk) ! 0 in H. Then uk

kukk1
has a convergent

subsequence in H.

Proof. Let

P (u) · v =

Z 2⇡

0

u0v0 dt+

Z 2⇡

0

uv dt = hu, viH

S(u) · v = �(a+ 1)

Z 2⇡

0

u+v dt+ (b+ 1)

Z 2⇡

0

u�v dt

T (u) · v = �
Z 2⇡

0

g(u)v dt
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so that

rE(u) · v = (P (u) + S(u) + T (u)) · v.

First, let us consider S(u). Since
⇣

uk

kukk1

⌘
L2

!  , then
⇣

uk

kukk1

⌘+ L2

!  + and

⇣
uk

kukk1

⌘� L2

!  � by the Lebesgue Dominated Convergence Theorem. Noting that

S(uk)

kukk1
· v = S

✓
uk

kukk1

◆
· v = �a

Z 2⇡

0

✓
uk

kukk1

◆+

v dt+ b

Z 2⇡

0

✓
uk

kukk1

◆�

v dt,

we conclude that S
⇣

uk

kukk1

⌘
· v ! S ( ) · v 8v 2 H. Since

����

✓
S

✓
uk

kukk1

◆
� S( )

◆
· v
���� =

������(a+ 1)

Z 2⇡

0

 ✓
uk

kukk1

◆+

� +

!
v dt

+(b+ 1)

Z 2⇡

0

 ✓
uk

kukk1

◆�

� �

!
v dt

�����

 (a+ 1)k
✓

uk

kukk1

◆+

� +kL2

+ (b+ 1)k
✓

uk

kukk1

◆�

� �kL2 ,

for kvkL2  1, then S
⇣

uk

kukk1

⌘
! S ( ) in H⇤.

Now, considering T (u), we see that

T (u) · v = �
Z 2⇡

0

g(u)v dt,

so {T (uk)} is bounded in H⇤ since

kT (u)kH⇤  kg(u)kL2  C.

So k T (uk)
kukk1

k ! 0 as k ! 1.
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Finally, considering P (u), we first note that P (u) · v = hu, viH . Therefore, by

the Riesz Representation Theorem, there is an isomorphism, i : H⇤ ! H such that

i � P (u) = u 8u 2 H. So, P is an invertible linear operator with continuous inverse.

Recalling that rE(u) = P (u) + S(u) + T (u) and that by a hypothesis of the

Palais-Smale condition, rE(uk) ! 0 in H⇤ as k ! 1, we see that

rE(uk)

kukk1
= P

✓
uk

kukk1

◆
+ S

✓
uk

kukk1

◆
+

T (uk)

kukk1

can be rewritten as

uk

kukk1
= P�1

✓
rE(uk)

kukk1
� S

✓
uk

kukk1

◆
� T (uk)

kukk1

◆
.

Therefore, invoking the continuity of P�1 and taking a limit as k ! 1, we conclude

that
uk

kukk1
H! P�1 (0� S( )� 0) = P�1(�S( )) =  .

Lemma 9.

g(uk) * G+� >0 +G�� <0

By Alaoglu’s Theorem, we know that {g(uk)}1k=1 has a weakly convergent subse-

quence since {g(uk)}1k=1 is bounded in L2[0, 2⇡]. Let g(uk) * g . Now we need only

to show that

g = G+� >0 +G�� <0

It will be helpful to recall some standard properties of Fuc̆́ık eigenfunctions,  , namely

that they are continuously di↵erentiable and have a finite number of critical points.

For a proof of such properties and an explicit formulation for such  , see [1]. Let
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v = �[c,d] be the characteristic function of some closed interval where 0  c < d  2⇡

and [c, d] ⇢ {x :  (x) > 0, 0(x) > 0} . Then we may write

Z 2⇡

0

g(uk)�[c,d] dt =

Z d

c

g(uk) dt

=

Z d

c

g(uk)

0

@1�
u0
k

kukk1

 0(e)

1

A dt+

Z d

c

g(uk)

0

@
u0
k

kukk1

 0(e)

1

A dt, (3.12)

where c < e < d such that  0(e) =  (d)� (c)
d�c

, as guaranteed by the Mean Value

Theorem. Analyzing the second term, we find

Z d

c

g(uk)

0

@
u0
k

kukk1

 0(e)

1

A dt =
1

 0(e)kukk1

Z d

c

g(uk)u
0
k dt

=
1

 0(e)kukk1
(G(uk(d))�G(uk(c)))

=
1

 0(e)

G(uk(d))

uk(d)

uk(d)

kukk1
� G(uk(c))

uk(c)

uk(c)

kukk1

Now, taking a limit of both sides, we see that,

lim
k!1

Z d

c

g(uk)

0

@
u0
k

kukk1

 0(e)

1

A dt = lim
k!1

1

 0(e)

G(uk(d))

uk(d)

uk(d)

kukk1
� G(uk(c))

uk(c)

uk(c)

kukk1

=
1

 0(e)

�
G+ (d)�G+ (c)

�

= (d� c)G+

=

Z 2⇡

0

G+�[c,d] dt

Focusing now on the first term of (3.12), we note that,

0

@1�
u0
k

kukk1

 0(e)

1

A!
✓
1�  0(x)

 0(e)

◆
,
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so

Z d

c

g(uk)

0

@1�
u0
k

kukk1

 0(e)

1

A dt !
Z d

c

g
✓
1�  0(x)

 0(e)

◆
dt.

Let ✏ > 0 and define M := kgk1. The fact that M exists is a consequence of the

boundedness of g. Choose ci, di such that

n[

i=i

[ci, di] = [c, d], |d� c| =
nX

i=1

|di � ci|, and

����1�
 0(x)

 0(ei)

���� <
✏

M
8x1, x2 2 [ci, di].

Then,

nX

i=1

����
Z di

ci

g
✓
1�  0(x)

 0(ei)

◆
dt

���� 
nX

i=1

✏|di � ci| = ✏(d� c)

Since ✏ was chosen arbitrarily, we may let ✏ ! 0, and hence, by substituting back into

(3.12) we find that

lim
k!1

Z 2⇡

0

g(uk)�[c,d] dt =

Z 2⇡

0

G+�[c,d] dt 8[c, d] ⇢ {x :  (x) > 0, 0(x) > 0} . (3.13)

The exact same calculations will show that, given [c, d] ⇢ {x :  (x) > 0, 0(x) < 0},

we get the same conclusion as in (3.13) . For [c, d] ⇢ {x :  (x) < 0, 0(x) > 0} and

[c, d] ⇢ {x :  (x) < 0, 0(x) < 0}, we can complete the same calculations, but will

this time find that

lim
k!1

Z 2⇡

0

g(uk)�[c,d] dt =

Z 2⇡

0

G��[c,d] dt.

Hence, we may recombine the integrals to see that

lim
k!1

Z 2⇡

0

g(uk)�[c,d] dt =

Z 2⇡

0

�
G+� >0 +G�� <0

�
�[c,d] dt. (3.14)

We have now shown that g(uk) * G+� >0 + G�� <0 for all characteristic func-

tions of closed intervals, so long as the closed intervals avoid critical points. If any
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intervals do include a critical point, however, we may delete some arbitrarily small

neighborhood of each of the finitely many critical point so that the total change in the

integral is less than some ✏. Standard arguments will show that since all L2 functions

can be approximated by step functions (which are themselves linear combinations of

characteristic functions over intervals), then the claim holds for all v 2 H.

Combining (3.10), (3.11), and (3.14), we now find that

0 = �

G+

Z

 >0

 dt+G�
Z

 <0

 dt

�
,

a contradiction because this quantity was nonzero by assumption. Hence, {uk}1k=1 is

a bounded sequence in L1. By examining (3.5), we note that {E(uk)}1k=1 is bounded

by hypothesis and all the integral terms, except the one involving u0
k, are bounded by

virtue of {uk}1k=1 being bounded in L1. Hence, {uk}1k=1 is a bounded sequence in H.

Now, as before, consider rE(uk) = P (uk)+S(uk)+T (uk). Since {uk}1k=1 is bounded

in H, then there exists a subsequence uk
H
* u and uk

L2, C! u. Now, taking a limit, we

see that

0 = lim
k!1

rE(uk) = lim
k!1

P (uk) + S(uk) + T (uk) = P (u) + S(u) + T (u)

and since P is invertible, we may rearrange the equation to see that,

uk
H
* u = P�1(�S(u)� T (u)).

Hence {uk}1k=1 has a subsequence which converges in H, and therefore we have satis-

fied (PS).

As before, we may now apply the saddle point theorem.

Theorem 3.4. Under the hypotheses of Theorem 3.3, there exists a solution to (3.1),

where g(u) is a bounded function.
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Proof. Recall that the functional E satisfies (PS) due to Theorem 3.3 and that

inf
�2�

sup
x2BR

E(�(x)) > sup
x2@BR

E(x),

due to Lemma 5. Hence by the saddle point theorem, if

� :=
�
� : BR(0) ✓ X ! H : � |@BR(0) (x) = x, � 2 C

 

and

d := inf
�2�

sup
x2X

E(�(x)),

then d is a critical value. Hence, for some u0 2 H, rE(u0) · v = 0 for all v 2 H.

Hence, rE(u0) ⌘ 0, so u0 2 Rn is a solution to Au� au+ � bu� + g(u) = 0.
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Chapter 4: Conclusion and Further Research

In conclusion, our results in Theorem 2.4 improve upon the results of Margulies

and Margulies in [7] by proving existence of solutions in both resonance and non-

resonance case. The proof of Margulies and Marguiles was also degree-theoretic, and

not variational. Our results in Theorem 3.4 improve upon recent results from Bliss,

Buerger, and Rumbos in [1]. Their argument, which made very careful use of a series

of estimates, was only able to show that (LLD) was su�cient for the existence of a

solution if the parameters (a, b) 2 ⌃ were su�ciently close to the main diagonal.

There still remain several open problems in both the discrete and ODE cases. In

the discrete case, determining a Landesman-Lazer type condition which puts the re-

striction on the function G, as in (LLD), instead of restricting the function g, remains

an open problem. Also, proving existence theorems for non-symmetric matrices re-

mains an open and challenging problem. See [9] for an example of existence theorems

for persymmetric matrices.

In both cases, how to use the variational characterization for certain pieces of the

Fuc̆́ık spectrum remains an open problem. Castro’s characterization in [2] gives a

characterization for some curves, but only within a strip determined by consecutive

eigenvalues. In some situations, there are points in R2 that are in a connected com-

ponent of R2 � ⌃ that is not accessible from the main diagonal. For these so-called

Type II regions, our existence theorems do not apply, but extending the variational

characterization in a new way might allow for those type of results.

37



Bibliography

[1] Bliss, D., J. Buerger and A. Rumbos. Periodic Boundary Value Problems and the

Dancer-Fuc̆́ık Spectrum under Conditions of Resonance. Electron. J. Di↵erential

Equations. 112 (2011), 1-34.

[2] Castro, A. and C. Chang. A Variational Characterization of the Fuc̆́ık Spectrum

and Applications. Rev. Colombiana Mat. 44 (2010), 2340.
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