Deferments and the Relative Cost of Conscription

Timothy J. Perri

ASU

February 27, 2009

Economists played

a major role in ending

conscription in the

U.S. in 1973

(Gates Commission).

The main economic objection to conscription:

the implicit tax on draftees as some with reservation wages in excess of the military wage are compelled to serve.

Friedman (1967): conscription might involve lower social cost than a volunteer military if a large % of the relevant population was required for military SVC.

This is due to the deadweight cost of taxation required to finance a military.

This idea was

developed by

Johnson (1990), Lee

& McKenzie (1992),

& Ross (1994).

Other costs of conscription:

1) too large K/L

2) excessive turnover

3) lower productivity of draftees

4) evasion costs

Mulligan (2008):

commutation is

allowed---a fee to

avoid svc.

However, since the CW, there has been no commutation <u>or</u>

substitution.

Deferments <u>have</u> existed for medical, occupational, & educational reasons.

Some deferments are costless, but others are not.

People expend resources to obtain deferments.

They can "dodge up" (Kuziemko, 2008) or "dodge down."

<u>Dodge up:</u> Invest in human capital when it's not otherwise worthwhile to do so.

<u>Dodge down:</u> become unfit medically, or commit serious enough crimes.

Costly deferments are the <u>same</u> as commutation (and substitution):

high reservation wage individuals avoid service.

Costly deferments are

different than

commutation:

the former involve

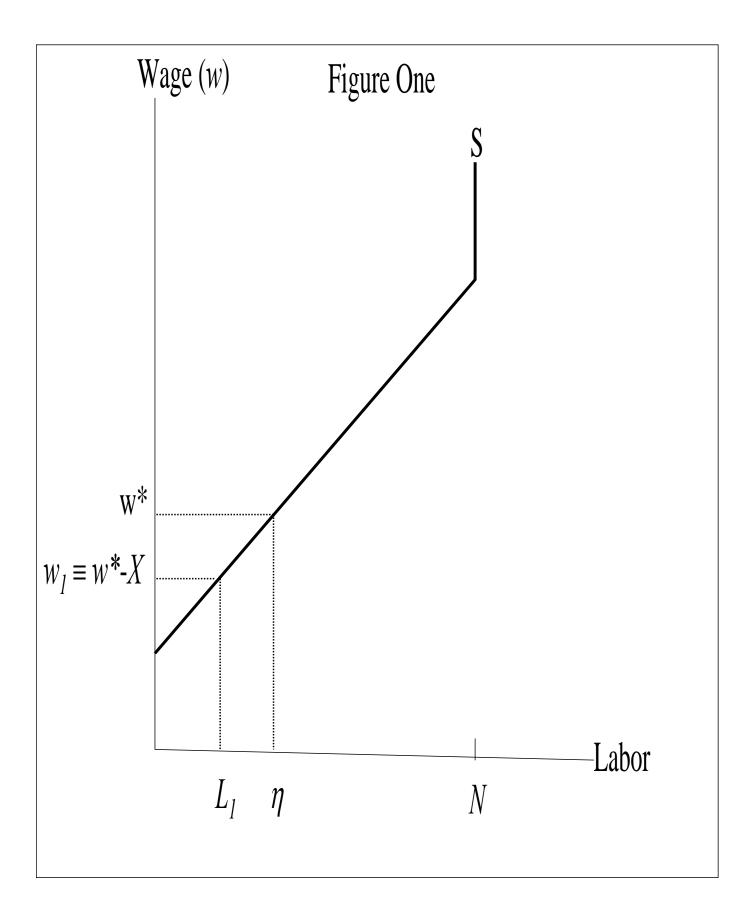
social cost.

A model with

deferments

Selective deferments

• *N* individuals subject to conscription.


• The military's demand for labor is fixed at η , $\eta < N$.

• w_R equals an individual's reservation wage.

• To get η to volunteer, pay w^* .

• O_{η} is the opportunity cost of the η lowest reservation wage individuals.

• Figure One: O_{η} is area under labor supply out to η .

• X = cost of adeferment.

• Set $w_M = w^* - X$ in order to attract η ---- L_1 who volunteer & η - L_1 who are drafted.

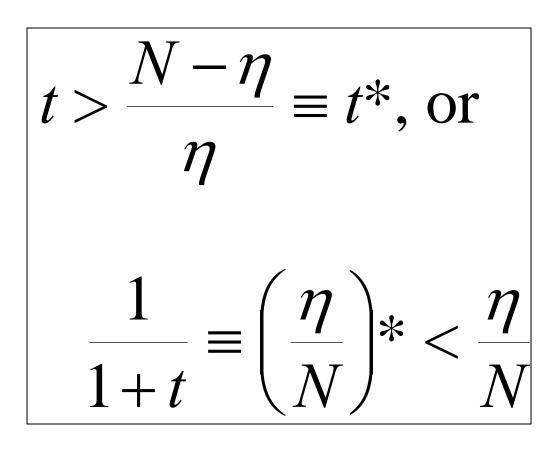
• If govt. can defer those with highest W_R , conscription is cheaper: deadweight cost of taxation \downarrow because payroll \downarrow .

• It is highly unlikely govt. can identify & costlessly defer those with the highest *w_R*s

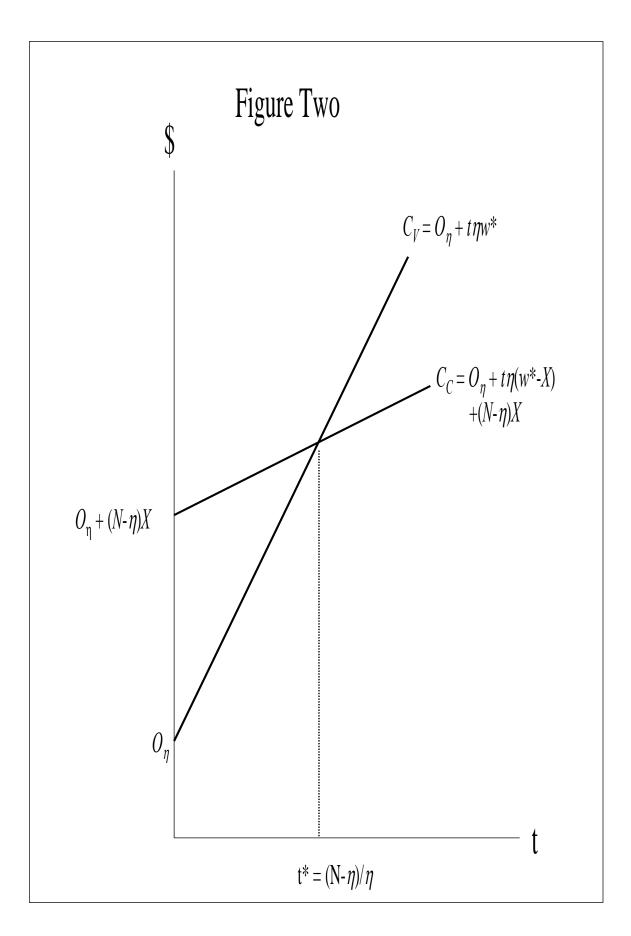
• <u>Ostensibly</u>, this was the objective during WWI.

However.... 1) Discretion by local draft boards; &

2) Some with high w_R s had low earnings $(w_R$ s reflected non-pecuniary factors).


Costly deferments • C_V = social cost with volunteer military

• C_C = social cost with conscription


 $\bullet C_V = O_\eta + t \eta w^*$

• $C_C = O_\eta + t \eta (w^* - X)$ + $(N - \eta)X$

• t = DWL per \$• When is $C_C < C_V$?

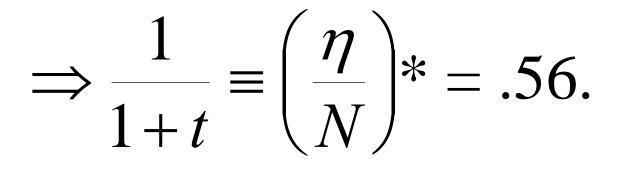
• See Figure Two.

• X has no effect on t^* ; as X^\uparrow , $w_M = w_1 \downarrow$ as does DWL; the # who defer, N- η , is unchanged.

• The reduction in DWL per unit change in X equals $t\eta$, so, if $t\eta > N-\eta$, $C_C < C_V$.

•When might η/N be

large enough for


$C_C < C_V?$

• Table One.

Table One				
War	% of the	Column 2 ÷ by		
	pop. in the	the # for WWII		
	military			
Civil War	10.4	.92		
WWI	4.5	.4		
WWII	11.3	1.0		
Korea	3.5	.31		
Vietnam	4.1	.36		

Feldstein (1999)
found DWL of .32
(existing tax rates) &
.78 (10% increase in all MTRs) for 1994.

• Using DWL of .78:

Fraction of those eligible for military (based on age, health, and mental apptitude) who served in WW2 (Segal & Segal 2004):

MTRs

• DWL is a positive function of marginal tax rates (MTRs) & ξ_{Labor}^{Supply} .

• Table Two.

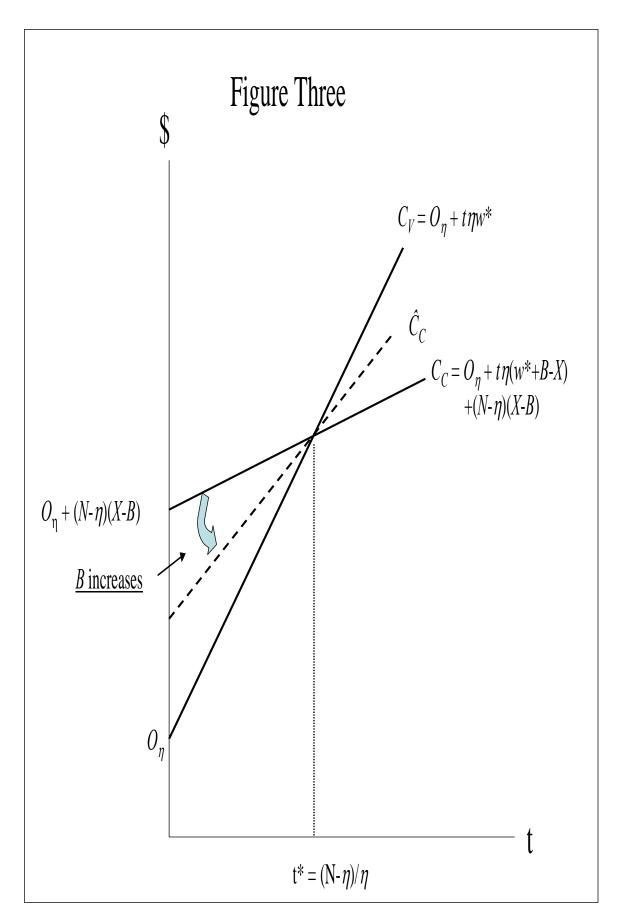
Table Two.				
	Ave. MTR	Ave. MTR		
Year	(Seater and	(Barro and		
	Stephenson)	Sahasakul)		
1942	14.2	13.4		
1943	16.8	14.8		
1944	14.8	18.3		
1945	15.0	18.6		
1994	17.4	21.5		

• Maybe WW2 was

near $\left(\frac{\eta}{N}\right)$ *.

• I would like to have

estimates of ξ_{Labor}^{Supply} for


the 1940s & 1990s.

Positive (social) benefits from deferments

• Benefits = B < X.

• When $B\uparrow$, $C_C \downarrow$ (direct effect).

• $B\uparrow$, $C_C\uparrow$ (indirect effect) because $w_M\uparrow$.

• For $t < t^*$, should

not have conscription.

If we do, should try to

raise *B* because $C_C \downarrow$.

• Govt. likely wants

 $B \downarrow (\text{lower } w_M).$

• For $t > t^*$, should

have conscription.

If we do, should try to

lower B because

$C_C \downarrow$, & govt. likely

wants to do this.

Costless deferments are widely available

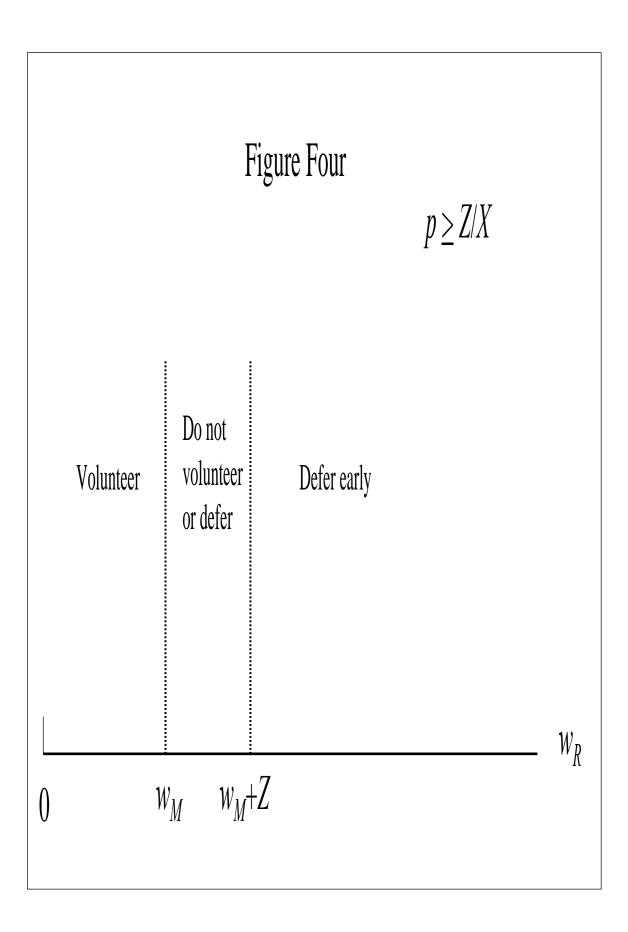
• $C_C \downarrow$: fewer spend *X*.

• C_C \uparrow : some of the "wrong" people are inducted.

• $C_C \uparrow: w_M \uparrow$ to get η .

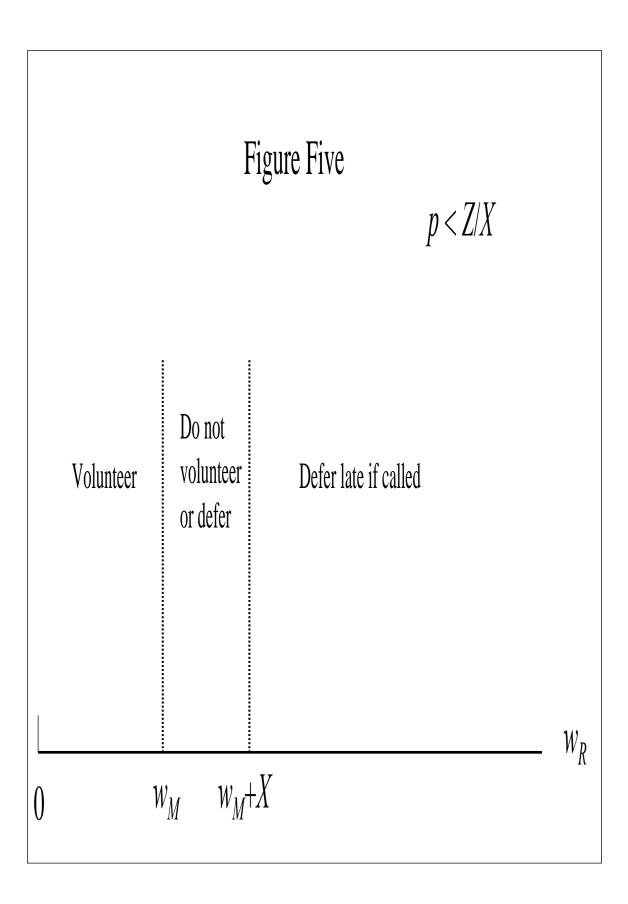
• λ is the faction of the pop. with costless deferments.

• $C_C < C_V$ if: $\frac{\lambda X}{2\eta} + \frac{N - \eta - \lambda X}{\eta} < t.$


 $\frac{\lambda X}{2\eta} + \frac{N - \eta - \lambda X}{\eta} \equiv t^{**}$

*t*** is not appreciably affected by λ.

Early deferments


• One can get a deferment before being drafted at a cost of Z < X.

• Prob. of being drafted is *p*.

• No one will choose late deferment (@ a cost of *X*).

- Then optimally set $w_M = w^* - Z (\& p = 1).$
- Since Z < X, $w_M \uparrow$.

• No one will choose early deferment.

• $p < Z/X \Rightarrow$ $w_M > w^* - Z.$

• <u>Would</u> govt. set p < Z/X?

Yes, <u>if</u> bgt. = payroll + turnover cost.

☺ I am done!! ☺