PROBLEM SET ONE -- MBA 5110

- <u>1</u>. Going to school now for 4 years will cost (direct & indirect) \$40,000 per year & will add to your earnings by \$20,000 per year. If r = 4% & you will work for 40 years, what is the net *PV* of this investment?
- <u>2</u>. a) Using Figure 1, what are CS & PS when the market clears?
 - b) If there is a price ceiling of $P_0 \& P$ can <u>not</u> implicitly increase, what are CS & PS?
 - c) If there is a price ceiling of $P_0 \& P \operatorname{can}$ implicitly increase, what are *CS* & *PS*? How does this answer depend on the manner in which *P* implicitly increased?

1

- <u>3</u>. Start with the following supply & demand schedules: P = 200 2Q & P = 20 + 4Q.
 - a) Find the market-clearing P & Q and the $E_p^D \& E_p^S$ at the equilibrium P & Q.
 - b) If there is a \$30 tax on sellers, find the equilibrium *P* & *Q*.
 - c) With no tax on sellers, but a \$30 tax on buyers, find the equilibrium P & Q.

Answers

<u>1</u>. We must find the *PV* of a \$1 per year for 4 years $(d_{.04, 4})$, the present value of a \$1 per year for 40 years $(d_{.04, 40})$, & $1/(1.04)^4$ since the individual receives the benefits starting 5 years (& not 1 year) from now.

 $d_{.04, 4} = 3.63, d_{.04, 40} = 19.8, \& 1/(1.04)^4 = .855.$

Thus, PV(benefits) = (.855)(19.8)(\$20,000) = \$338,580. PV(cost) = (3.63)(\$40,000) = \$145,200. Net PV = \$193,380.

- <u>2</u>. a) At market clearing, CS = U + V + Y, & PS = W + X + Z.
 - b) With a price ceiling = $P_0 \& \underline{\text{no}} \text{ implicit } P$ increase, CS = U + V + W, PS = X
 - c) With a price ceiling = P_0 & an *implicit* P increase via tied sales or quality reductions, the implicit P increase = $P_2 P_0$, so the total P is effectively P_2 . CS = U & PS = V + W + X. If P increases implicitly by $P_2 P_0$ due to queues, producers get only P_0 per unit, but consumers effectively pay P_2 . CS = U & PS = X.
- 3. a) Set demand & supply (D & S) equal, find Q, & then insert into either D or S to find P:

$$200 - 2Q = 20 + 4Q, \implies Q = 30 \& P = $140$$

$$E_P = \frac{1}{slope} \frac{P}{Q}$$
 so $E_p^D = -\frac{1}{2} \frac{140}{30} \approx -2.33$, & $E_p^S = \frac{1}{4} \frac{140}{30} \approx 1.17$.

- b) A \$30 tax on sellers \Rightarrow S is now P = 50 + 4Q---each seller now sells the same Q only if P is \$30 higher. Now solving D & S yields Q = 25 & P = \$150. $\Delta P = 10 ---1/3 of the tax. Each seller gets to keep \$120---\$20 less than before, so sellers bear 2/3 of the burden of the tax. Sellers bear a larger tax burden because they are less responsive to P than are buyers: $|E_p^D| > E_p^S$.
- c) With a \$30 tax on buyer, each buyer is willing to pay \$30 less, so D is: P = 170 2Q; solving D & S yields P = \$120 & Q = 25. Buyers again end up paying \$10 more, & sellers keep \$20 less per unit compared to the case with no tax.

2