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ABSTRACT 
 
 
We explore the behavioral consequences of sleep loss and time-of-day (circadian) effects on a 
particular type of decision making.  Subject sleep is monitored for the week prior to a decision 
experiment, which is then conducted at 8 a.m. or 8 p.m.  A validated circadian preference 
instrument allows us to randomly assign subjects to a more or less preferred time-of-day session.  
The well-known p-beauty contest (a.k.a., the guessing game) is administered to examine how 
sleep loss and circadian mismatch affect subject reasoning and learning.  We find that the subject 
responses display significantly lower levels of iterative reasoning when ‘sleep deprived’ or at 
non-optimal times-of-day.  A non-linear effect is estimated to indicate that too much sleep also 
leads to choices consistent with lower levels of reasoning, with an apparent optimum at close to 
7 hours sleep per night.  However, repeated play shows that sleep loss and circadian mismatch do 
not affect learning or adaptation in response to information feedback.  Nevertheless, our results 
apply to environments where anticipation is important, such as in coordination games, stock 
trading, driving, etc.  Our results have important implications for the millions of adults 
considered sleep deprived, as well as those employed in shift work occupations.   
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Introduction 

Recent surveys from the National Sleep Foundation indicates that the average American adult 

now sleeps less than 7 hours per night, causing concern that as many as 50 million American 

adults are chronically sleep deprived.1  Some argue that 7-7.5 hours per night is satisfactory for 

the average healthy adult (Horne, 2004), though others document reduced cognitive performance 

when one sleeps 7 hours relative to 8 or 9 hours per night in controlled laboratory settings (Van 

Dongen et al., 2003; Belenky, et al, 2003), with more serious effects for longer bouts of sleep 

loss.  No one doubts that, in many professions and activities, public safety is at issue for an 

increasingly sleep-deprived society.  For example, U.S. and Canadian truckers average about 5 

hours sleep per night (Mitler et al., 1997), and medical residents self-report significantly more 

medical errors when sleeping less than 5 hours per night (Baldwin  et al., 2004; see also, 

Weinger and Ancoli-Israel, 2002).  Even small decreases in sleep following the Spring Daylight 

savings shift lead to both increased fatal traffic accidents (Coren, 1996b) and accidental deaths 

unrelated to traffic accidents (Coren, 1996c).2  Independent of the cost of accidents, sleep loss 

also costs the U.S. economy an estimated $40 billion annually in terms of lost U.S. labor 

productivity—based on a conservative 4% reduction in labor productivity for sleep-deprived 

adults (Stoller, 1997).   

 Not surprisingly, sleepiness increases with one’s wake time in what is referred to as the 

homeostatic drive for sleep.  However, superimposed upon this is the body’s natural daily cycle 

                                                 
1 Recent data also show that 60% of adults surveyed reported driving while drowsy, and 36%  reported falling asleep 
or nodding off at some point while driving.  These data are from the National Sleep Foundation’s 2005 and 2008 
‘Sleep in America’ polls of adults and working adults, and can be accessed at www.sleepfoundation.org.    

2 In one of the few economics studies considering sleep effects on measureable economic outcomes, Kamstra et al., 
(2000) find that the daylight savings shift, which causes an short-term sleep desynchronosis, leads to significant 
financial market losses each year on the first trading day following the shift. 
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of alertness: the circadian rhythm.3 An adverse point in one’s circadian rhythm, or what we will 

call “circadian mismatch” can explain one’s drowsiness in the afternoon even when sleeping 

adequately every night.  Similarly, more favorable points in one’s circadian rhythm can lead to 

periods of relative alertness even after more than 24 hours of sleep deprivation.  Thus, sleep loss 

and circadian mismatch both produce a strong biological need for sleep, resulting in sleepiness.  

Researchers have found decreased performance at adverse circadian phase times—such as what 

shift-workers might experience—in the areas of recall memory, subjective alertness, visual 

attention (Wright et al., 2002), and reaction times (Wright, et al., 2002; Horowitz et al., 2003).  

In an early study, Bjerner et al., (1955) examine about 175,000 ledger entries over a 3-shift (24 

hour a day) gasworks factory in Sweden.  Two distinct peaks in entry errors were found:  a major 

peak at about 3 a.m., and a secondary minor peak at about 3 p.m.  This is consistent with 

evidence summarized in Coren (1996a) that shows a major nighttime and minor afternoon peak 

in single-vehicle automobile accidents. 

 This paper takes a novel look at naturally-occurring sleep loss and circadian influences 

on rationality and learning.  Iterative reasoning, anticipation, and adaptation are crucial skills 

towards successful performance in many professions and decision environments: financial 

market trading, marketing and entrepreneurial decisions, and driving, to name a few.  Because 

behavioral outcomes are often the product of many different components (e.g., cognition, motor-

skills, risk attitude, etc) we aim to examine only the sleep and circadian effects of certain higher-

level decision skills in this paper.  Any potential interventions aimed at reducing traffic accidents 

or stock market losses that result from sleep deprivation would be misdirected if one failed to 
                                                 
3 The circadian rhythm is influenced by core body temperature and correlated with melatonin secretion, which peaks 
in the middle of the night.  Light/dark queues help set and reset the circadian rhythm as is illustrated by one’s 
adjustment to jet lag after changing time zones. 
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understand whether the root cause was slowed reaction times, motor skill decrements, lapses in 

vigilance, failure to reason or anticipate, or a combination of effects.  This research will help 

shed light on relatively hidden decision effects of sleep in a setting where sleep habits closely 

match those in the naturally-occurring world. 

 We find that both naturally occurring sleep restriction and circadian mismatch lead to 

lower levels of iterated reasoning in subjects’ initial decisions.  Interestingly, we find that subject 

“rationality” appears optimized in initial round decisions when the subject averages about 7 

hours of sleep per night, ceteris paribus.  That is, nonlinear sleep effects are estimated to indicate 

that both too little and too much nightly sleep may lead to reductions in iterative reasoning.  

Subjects who are most circadian mismatched (e.g., extreme evening-type subject in an 8 a.m. 

experiment session) also make more rational initial choices than those moderately mismatched, 

perhaps indicating that extreme mismatch also produces awareness of the mismatch and use of 

compensatory efforts.  However, adaption and convergence towards equilibrium with repeated 

play indicate no difference in these learning effects as a result of sleep loss or circadian 

mismatch.  Thus, in our environment sleepy subjects are able to learn much like nonsleepy 

subjects.  Our results therefore hold implications primarily for initial performance in new 

environments (i.e., same group but new game parameters) and for one-shot interactions.   

 

The p-Beauty Contest (Guessing) Game 

The interest in p-beauty contest games stems from a desire to understand environments where 

anticipation is valued.  Such games are straightforward.  Subjects in a group are asked to submit 

a number from some a designated interval X=[xmin , xmax], and let  be the average of all guesses.  

The guess closest to p*  times the average guess wins a prize, where p>0 is a common 
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knowledge parameter.  John Mayard Keynes (1936) considered newspaper competitions where 

entrants are asked to pick out the six most “pretty” faces (from a series of photographs), and a 

prize goes to the person whose picks correspond most closely with the average preferences of all 

respondents.  Related environments can be captured by differing whether the prize goes to the 

person exactly matching others’ choices (p=1, the newspaper competition game mentioned by 

Keynes or coordination games) or whether the prize goes to the person whose choice deviates 

from the group average in a specified way (p ≠ 1).   

Thus, the beauty contest captures many important features of higher-level thinking that 

are useful outside the lab.  Ho et al., (1998) describe the Keynes stock market analogy as a p-

beauty contest game where p < 1 in the sense that selling a rising stock before others yields the 

highest payoff.  Games involving network externalities would be another example of a p=1 

beauty contest.  In such games, the payoff is higher to those correctly anticipating the choice of 

others, such as in guessing which new technology standards will be adopted.4  Individuals may 

engage in a guessing game each morning if selecting between alternative commuting routes to 

work, or if an entrepreneur must anticipate rivals firm decisions on short notice.  Importantly, the 

literature has evaluated such games experimentally (e.g., Nagel, 1995; Stahl, 1996; Duffy and 

Nagel, 1997; Ho et al, 1998, Bosch-Domenech et al, 2002; Weber, 2003;  Costa-Gomez and 

Crawford, 2006; Grosskopf and Nagel, 2007) in efforts to explore bounded rationality or 

iterative dominance in initial guesses, as well as learning and adaptation across multiple rounds 

of play with or without information feedback. 

  

Experimental Design 
                                                 
4 Our thanks to Mike McKee for suggesting the example of network externalities. 
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We control for both objectively measured sleep quantities and circadian mismatch in our unique 

design.  In order to manipulate circadian mismatch in our design, we need an objective and 

validated measure of each subject’s sleep personality, or chronotype.  A validated short-form 

survey instrument is given in Adan and Almirall (1991), which is a reduced form of the original 

morningness-eveningness survey instrument given in Horne and Ostberg (1976).  The reduced-

form instrument, henceforth rH&O, consists of 5 items and ranks respondent to this 

morningness-eveningness questionnaire (MEQ) on a scale of 4-25.  The rH&O classifies subjects 

as follows:  4-7 Definite Evening Type, 8-11 Moderate Evening Type, 12-17 Intermediate Type, 

18-21 Moderate Morning Type, and 22-25 Definite Morning Type.  One could simply administer 

this instrument after recruitment to each recruited subjects, but this greatly complicates obtaining 

a balanced sample of morning- and evening-types.  The reason is that, in young adults, morning-

type individuals are significantly more rare than evening types.  Young adult estimates from 

college students find that  only about 7% are morning-types, whereas 48% are evening-types 

(Chelminski et al., 2000). 

 The alternative approach we take is to first administer an online survey, which includes 

demographic questions, the rH&O instrument, and screening questions for depression, anxiety, 

and any diagnosed sleep disorder.5  A wave of this survey went out to University email lists 

(mostly students, although a small number of faculty and staff responded as well) in each of the 

Spring, Summer, and Fall semesters during an academic year.  Each survey wave generated close 

to 1000 responses, and a random prize drawing was offered as incentive to complete the 5-10 

                                                 
5 Screening questions for anxiety and depression were not included until after about 25% of the sample has already 
been acquired.  For the majority of the sample, however, we explicitly screen out survey respondents who are at risk 
for depression or anxiety from participating in the main experimental phase, given the known correlation between 
these and sleep difficulty.   For the entire sample, we include no subjects with known sleep disorders.  
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minute online survey.  It was also indicated that completing this survey was required for 

eligibility to participate in a special set of upcoming cash-compensated research experiments 

involving sleep and decisions.  Figure 1 shows the chronotype profile of survey respondents in 

the representative summer wave, which roughly correspond to Chelminski et al. (2000).  From 

the survey respondents, we then score the rH&O questions to identify morning- and evening-type 

subjects, randomly assign them to an evening or morning session experiment time slot, and then 

contact them for recruitment for the main experiment.  In this way, a subject is randomly 

assigned to either be in a morning (8:00 a.m.) or evening (8:00 p.m.) experiment session, and if 

they cannot or choose not to sign up, they are not allowed the option of the other time session.  

We mostly eliminate intermediate-type subjects from recruitment to the main experiment 

because circadian match/mismatching is not as stark with intermediate-types.   

Subjects are recruited to the main phase of the experiments to attend two 1-hour sessions, 

separated by one week (using only Tuesdays, Wednesday, and Thursdays to avoid weekend 

confounds), at their randomly assigned morning or evening time slot.  During Session 1, subjects 

signed Consent forms, complete 3 short surveys,6 and were assigned an actigraphy (sleep watch) 

to wear for the next week.  The actigraphy, which looks much like a wrist watch, continuously 

measures G-forces and generates an “activity-count” for each time epoch of a specified size.  For 

our study, we utilize 30-second time-epochs.  Subjects wear the watch 24 hours a day over the 

course of the actigraphy week, with few exceptions.7  That is, the resulting data from each 

subject looks much like ‘seismographic’ data of the subject’s wrist movements.  The basic idea is 

                                                 
6 These include a socio-economic status survey, a brief instrument assessing numeric abilities, and the Need for 
Cognition Scale (Cacioppo and Petty, 1982), which scores a subject’s preference towards and enjoyment of thinking 
and cognitive engagement. 
7 Exceptions include taking the watch off for contact sports, or whenever the watch may be in danger.  Subjects note 
such instances in the sleep diaries, and these periods are scored as wake periods by default. 
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that periods of low to no activity are scored as sleep and, in conjunction with use of subjective 

data from sleep diaries that subjects also complete, the actigraphy-derived measure of total sleep 

time does not differ significantly from what one gets with the intrusive alternative of 

polysomnography (Kushida et al. (2000).  Figures 3a and 3b show examples of the scored 

actigraphy data from two of our subjects.  Subjects are compensated a flat fee of $30 for 

providing the week’s worth of sleep watch and sleep diary data.  This compensation is 

independent of their incentive-pay in the decision experiment that occurs at the end of their week 

during Session 2 of the experiment (the decision experiment session).   

Session 2, at 8:00 a.m. or 8:00 p.m. one week after Session 1, includes the decision 

experiments, a short instrument to assess current sleepiness and caffeine use8, removal of the 

actigraphy, and payment of all compensation in cash and private.  It is important to note that 

sleep quantities are not manipulated in our design.  Subjects are instructed to behave as they 

normally would throughout the week of actigraphy data acquisition.  A subjective cutoff of 6.5 

hours sleep per night is used to designate subjects as sleep-deprived (SD) or well-rested (WR) in 

Table 1.  The difference in nightly sleep average between the morning- and evening-types in our 

sample is not significantly different (Mann-Whitney test, p>.10), indicating that there is no 

confounding correlation between chronotype and sleep loss. 

As a validation of our circadian mismatch protocol, for the majority of our sample (n=78) 

we administer the well-known Karolinska Sleepiness Scale (KSS) both prior to and just after the 

decision experiment session, and then average the two ratings to get a subjective measure of a 

subject’s sleepiness at the time of the decision experiment.  The KSS runs from 1=extremely 

                                                 
8 The state-level sleepiness and caffeine questions were added after the first 3 groups (24 subjects) as a validity 
check on the circadian mismatch protocol.  So, these data are available on 78 out of 102 subjects). 
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alert to 9=extremely sleepy—fighting sleep.  Our circadian mismatch protocol is validated in the 

sense that average KSS scores are significantly higher for circadian mismatched (MM) subjects 

(4.56) compared to circadian matched (CM) subjects (3.73) (p=.04 Wilcoxon unmatched two-

sample test).9  However, morning mismatched subjects—evening subjects in an 8 a.m. 

experiment (18 of the 42 mismatched subjects) reported average KSS scores of 6.19.  It appears, 

therefore, that a morning mismatch is a more serious mismatch, as indicated by higher subjective 

sleepiness ratings, but these sleepier subjects are not necessarily less rational in terms of their 

behavioral choices in the guessing game, as we will see below.  This increased subjective 

sleepiness is likely due to evening-type subjects making decisions when normally asleep in a 

morning session, which is not the case for the morning-types in an evening (8 p.m.) session (see 

average bed times in Table 1).  It should be noted however, that the subjective sleepiness rating 

does not significantly predict behavioral outcomes in the analysis below, and therefore we 

consider it useful primarily as a casual indication that our circadian mismatch protocol was 

successful.  This is true in spite of the fact that our design is purposefully uncontrolled with 

respect to the use of coping mechanisms to combat sleepiness.10 

During Session 2 we administer the well-known guessing game experiment studied first in 

the lab by Nagel (1995).  Following the parameterization in Ho et al (1998), we employ a 

treatment with a treatment of p=.7, X=[0,100] (treatment 1), and another treatment with p=1.3, 

X=[100,200] (treatment 2).  The order of the treatments is reversed for half of the 12 total 

sessions, for both morning and evening experiment sessions.  Ho et al, (1998) note that average 

                                                 
9 The result holds if one instead compares KSS sleepiness and the continuous Mismatch Scale variable introduced in 
the Results section. 
10 We do not, however, find any significant differences in caffeine consumption in the 2 hours prior to the decision 
experiment based on circadian mismatch, and only one subject took a nap during the afternoon prior to the evening 
experiment session time. 
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guess levels can be categorized into levels of iterated reasoning by elimination of dominated 

strategies.  For example, in treatment 1, even if all guesses are at the upper bound xmax =100, 

then .7*100=70, and so guesses in the range [70,100] describe zero-level rational subjects, R(0), 

whereas rational R(1) subjects have guesses in the [0,70] interval.  R(2) subjects consider all 

others obey R(1) reasoning and so R(2) subjects guess in the [0,49] interval.  For example, we 

would classify a subject with guess x [49,70] as an R(1) subject.  The unique equilibrium in 

treatment 1 is a guess of 0, which requires infinite depth of reasoning (i.e., R(∞) application of 

iterated dominance).  In treatment 2, application of iterated dominance leads to the equilibrium 

guess of x=200 at two levels of iterated reasoning.11  The choice of the Ho et al. (1998) 

parameters was therefore of interest for the reason that treatment 2 presents subjects with a p-

beauty contest that is notably more cognitively simple than treatment 1.12   

The objective of the present paper is not to present a detailed categorization of levels of 

iterated rationality, nor is our objective to discriminate between alternative models of iterative 

reasoning.  The common feature of alternative categorizations is that higher levels of iterated 

reasoning correspond to lower initial round guesses in our treatment 1 but higher initial round 

guesses in treatment 2. 

Our experiments utilize a full information framework where subjects are informed of the 

guesses of all other group members (as well as the target guess) at the end of each round.  Thus, 

converge towards equilibrium in multi-round play will be interpreted as learning or adaptation, 

                                                 
11 Application of iterated dominance does not predict clusters of initial guesses around specific points without 
further assumptions.  Costa-Gomez and Crawford (2006) highlight the success in Nagel’s (1995) approach to 
categorize initial disequilibrium choices, but the difference between approaches is not substantive for our purposes.  
Either approach implies infinite reasoning to reach equilibrium in treatment 1, but finite depth of reasoning to reach 
equilibrium in treatment 2. 
12 The experiments are computerized and administered via the Veconlab guessing game program at 
http://veconlab.econ.virginia.edu/admin.htm . 



10 

 

rather than as a fundamental change in subjects’ level of rationality.  All our groups range from 

8-10 subjects, which we feel adequate to eliminate any concern for group size effects as studied 

in Ho et al (1998)—they examined groups of 3 and 7 subjects. 

Our design is a hybrid of experimentally manipulated circadian match/mismatch for the 

decision session time slot and uncontrolled sleep choices captured objectively by actigraphy.  

Whereas in a controlled sleep lab study, subject coping mechanisms against sleepiness are 

strictly controlled and/or eliminated (e.g., no caffeine or nicotine use, no physical activity, etc), 

they are uncontrolled in our design.  We therefore consider that any significant behavioral effects 

we find are a conservative measure of sleep and circadian effects in this decision environment.   

  

Results 

The data are from 102 subjects (46 female), average age 23.2 ± 8.4 years of age.  Payoffs 

averaged a total of $52.55 for each subject:  $30 for the actigraphy week, and then $22.55 ± 

$8.84 from the guessing game experiments.  Average nightly sleep quantities over the 7 nights 

prior to the decision experiment were 380 ± 59 minutes, or just under 6.5 hours of sleep per 

night.  Including naps increases daily sleep time by an average 14 minutes, but since this “total 

daily sleep time” measure does not provide any additional predictive power (results available 

upon request), we utilize the traditional nightly sleep variable in our analysis.  Figure 2 presents 

the probability distribution of the chronotypes recruited based on MEQ score with traditional 

cutoffs highlighted.  Due to the difficulty in identifying and recruiting morning-types in our 

study, we recruited individuals with MEQ scores of 16 and 17, although these fall below the 

traditional (subjective) cutoff point for a morning type.  For ease of exposition, we still refer to 

these subjects as morning-types.  In the end, the evening-types we recruit are, on average, strong 
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evening-types.  Thus, we still sample subjects with good separation in the sleep personality 

dimension.  The design cells for circadian match/mismatch are shown in Table 1, showing 

roughly equal numbers of matches and mismatches for both morning- and evening-types.  We 

also include summary statistics on various sleep parameters for each design cell in Table 1.   

As we proceed, we will present analysis from separating the data into subjectively-defined 

group of well-rested (WR), sleep-deprived (SD), circadian matched (CM), and circadian 

mismatched (MM) subjects.  However, given that both sleep quantity and MEQ score provide 

continuous measures of sleep quantity and chronotype, we will also present analysis utilizing 

these continuous variables as regressors.  We define sleep-deprived as any subject having a 

nightly sleep time average of less than 6.5 hours.  This generates a sample of 55% SD subjects, 

45% WR subjects.  Figures 3a and 3b show the actigraphy data from a subject scored as SD and 

one scored as WR; one is a morning-type, the other an evening-type subject. 

The p-beauty contest results are first shown in summary form in Figures 4a and 4b, where 

we plot the pooled (across groups) average guesses for each round within a treatment.  From 

these figures it does not appear that there are any noticeable differences in the evolution of 

average guesses across rounds (learning).  We will examine subject learning in the next section.  

Initial round guesses offer a way to examine subject choice prior to the onset of learning or prior 

to any adaptation in response to feedback information.  Our initial hypothesis is that sleep loss 

and circadian mismatch lead to reduced rationality (i.e., reduced application of iterative 

reasoning).  Thus, we can employ one-tailed tests of the null hypotheses that initial round 

guesses do not differ by sleep state (SD or WR) or time-of-day matching (MM or CM) against 

the alternative hypotheses that guesses are farther from equilibrium for SD and MM subjects.  
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The data constitute a non-matched pair of samples for the initial round guesses, and we use the 

non-parametric Mann-Whitney two-sample test.  Results are highlighted in Table 2. 

The results offer support for our hypotheses that both sleep deprivation and circadian 

mismatch result in responses farther from equilibrium, though the result only holds in treatment 

1 for circadian mismatch.  Table 3 shows subject categorization based on levels of iterated 

dominance for these treatments highlighted in Ho et al., (1998).  The general indication is that 

subjects apply higher levels of iterated dominance when well-rested rather than sleep-deprived, 

or when at their more peak time of day rather than at their off-peak time of day.13  In treatment 1, 

subject initial guesses are significantly closer to equilibrium when subjects are well-rested, or 

when they are matched to a circadian peak point-in-time.  Table 2 shows that average guesses of 

60.15 (SD) and 61.15 (MM) that would correspond to categorizing the average sleep-deprived 

and circadian mismatched subjects as having iterated reasoning level R(1), whereas well-rested 

and circadian matched subjects would be at level R(2) (average guesses at about 48).  The results 

are qualitatively similar for treatment 2, although initial round guesses are only statistically 

significantly closer to equilibrium (i.e., higher guesses, in this case) for WR compared to SD, 

and not for the circadian match/mismatch test. 

Because our sleep and chronotype data are continuous, we waste information to a large 

extent by restricting analysis to dichotomous variables based on subjective cutoffs.  We can 

alternatively model initial round guesses as a function of the (continuous) sleep quantity variable 

                                                 
13 If one examines experience in the p-beauty contest game, then initial guesses in the first treatment administered 
(round 1) would constitute inexperienced play, whereas initial guesses the second treatment administered (round 11) 
would constitute experienced play in a different p-beauty contest.  Our data show that there is an apparent anchoring 
effect of guesses from the initial treatment when making round 11 guesses, which differs from results in Ho et al., 
(1998).  That is, more subjects display lower levels of iterated dominance (i.e., higher initial round guesses) in 
treatment 1 when it follows treatment 2, irrespective of sleep or circadian state.  This anchoring  does not seem to 
occur in treatment 2 when it follows treatment 1.  These data are available from the authors on request. 
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and a circadian mismatch scale we generate.  Recall that a subject’s chronotype is indicated by 

her morningness-eveningness questionnaire (MEQ) score, which lies in the interval [4,25], with 

lower (higher) scores indicating more evening-types (morning-types).  Define the variable 

Mismatch Scale as follows: 

 

This variable takes on values in the [0,1] interval, with larger values indicating a larger degree of 

circadian mismatch.  For example, the most extreme circadian mismatch (Mismatch Scale=1) in 

our design is either an extreme morning-type subject with MEQ=25 in an evening session, or an 

evening-type subject with MEQ=4 in a morning session.  Our sample includes circadian 

mismatch values within the full range or [0,1], including the endpoint extremes.14  While the 

experimental design was initially conceived with 12-hours separating morning and evening 

sessions for symmetry, it is likely the case that the greater circadian mismatch occurs with 

evening subjects in our 8 a.m. session as opposed to morning subjects in the 8 a.m. session.  

Curiously, however, when focusing the mismatch analysis on these morning mismatches alone, 

we find no significant differences in initial round guesses in either treatment.  This indicates that 

the results are driven by evening mismatches—morning subjects in our evening sessions—which 

seems paradoxical given that our validation instrument showed these same subjects seemed less 

circadian mismatched based on KSS sleepiness reports.  We further address this curiosity in the 

analysis below. 

                                                 
14 The extreme Mismatch Scale values = 1 in our sample are all due to extreme evening-type subjects (MEQ=4 
scores) in morning sessions.  As shown in Figure 2, the most extreme morning-type in our sample are those with 
MEQ score=22. 
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 Consider the following model of initial round guesses (N=102): 

Guessi = α + β1*SleepQi + β2*SleepQi
2 +  β3*MSi + β4*MSi

2 + ε. 

We estimate the model separately for treatments 1 and 2, and the results are shown in Table 4.15  

Table 4 indicates that both nightly sleep quantity over the prior week and circadian mismatch are 

statistically significant predictors of initial round guesses.  Most interestingly, the squared terms 

to allow for nonlinear effects are both statistically significant.  Figures 5a-5d show the models’ 

predictions in each treatment with respect to one’s average nightly sleep quantity (Fig. 5a, 5b) 

and Mismatch scale (Fig. 5c, 5d).  With respect to sleep quantity, the model predicts guesses 

closer to equilibrium as one gets more nightly sleep up until about 6.8 hours per night (about 7 

hours per night in treatment 2).  Average nightly sleep beyond that is predicted to push one’s 

initial round guess farther from equilibrium.  The prediction is that there is an optimal level of 

nightly sleep, but rationality is not monotonically increasing in nightly sleep.  

 We also estimate a non-linear pattern of the effect of the degree of circadian mismatch on 

initial round guesses.  Just as the estimations in Table 4 do not indicate that more sleep is always 

better, the forecast of initial round guess with respect to circadian mismatch (holding sleep 

constant) is intriguing.  In a local (as opposed to global) sense, initial round guesses are closest 

to equilibrium at minimum and maximum circadian mismatch.  In treatment 1, the globally 

optimal level of circadian mismatch is none, though in treatment 2 the forecasted difference in 

initial round guess for zero versus complete circadian mismatch is negligible.  The basic flavor 

of this result is that, controlling for sleep loss, it may better to be either at one’s optimal time of 

day or to be completely off one’s optimal time of day.  It is the intermediate levels of circadian 

                                                 
15 Estimation of the model with an interaction term yields an insignificant coefficient on the interaction term and 
does not change our results (estimation available upon request).  Our results are also unchanged by a group-specific 
fixed effects modeling of the data. 
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mismatch that we estimate to generate initial round guess that are farthest from equilibrium.  

This is a curious result, but we highlight that our design is uncontrolled with respect to strategies 

subjects may employ to combat sleepiness.  Circadian mismatch may also display distinct effects 

when one holds MEQ score constant and varies the time of day along a continuum, as opposed to 

fixing two time points as we have done and examining mismatch resulting from the range of 

MEQ scores.  It is of interest that the highest levels of circadian mismatch may be better than 

lesser mismatch levels if they are more likely to promote explicit coping strategies.  Our results 

do not, however, indicate increased use of caffeine at high levels of circadian mismatch 

(Mismatch Score >.70) compared to low levels of mismatch (Mismatch Score < .30).   

While we do not have an explanation for this nonlinear effect of circadian mismatch on 

levels of iterated reasoning, we do offer a hypothesis.  Subjects report increased subjective 

sleepiness levels the higher the degree of circadian mismatch (p=.00 on the OLS β =2.54 

coefficient estimate from KSS=α + β∗Mismatch Score + ε).  An increased awareness of one’s 

sleepiness may facilitate compensatory effort.  For example, Drummond et al. (2005) report both 

increased subjective sleepiness and significantly higher self-reported effort to complete a verbal 

learning task following an admittedly more extreme 36 hours of total sleep deprivation.  

Subjects’ KSS scores do not, however, vary with nightly average sleep time (p=.69 on the OLS 

β =.001 coefficient estimate from KSS=α + β∗SleepQ + ε).  It may be that SD subjects in our 

experiments do not indicate increased sleepiness yet MM subjects do because sleep loss is 

voluntary in our design, but circadian mismatch is manipulated (and subjects are aware of this). 

Perceived sleepiness may explain why extreme circadian mismatch may engage a subject 

during the relatively short-term guessing game task.  That moderate sleep loss in our 

environment does not lead to increased subjective sleepiness is consistent with findings literature 
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on laboratory-controlled partial sleep deprivation).  Van Dongen et al, (2003) show that partial 

but chronic sleep deprivation over the course of 1-2 weeks harms working memory performance 

and behavioral alertness to an extent similar to one night of total sleep deprivation, but subjective 

sleepiness reported is significantly lower in the case of chronic partial sleep deprivation.  Thus, 

the existing research and findings in our study highlight a particular concern regarding partial 

sleep loss—individuals may experience significant behavioral deficits similar to those from 

shorter-term total sleep deprivation, but self-reported sleepiness may not be nearly as affected 

under partial sleep loss.  This may constitute a behavioral trap that is magnified when sleep 

restriction is voluntary, because our natural tendency in such cases may be to rationalize that our 

voluntary choice to restrict sleep does not have any harmful effects. 

 

Learning and Adaptation 

 An overview of the pattern of guesses across all 10 rounds of the p-beauty contest game 

is in Figures 6 and 7.  For each treatment, we separate the data by WR v. SD, and by MM v. CM.  

The scatter-plots show the relationship the difference in a subject’s current round guess and her 

guess in the previous round compared to the difference between the optimal guess (the “target”) 

and the subject’s guess in the previous round.  Each plot also includes the simple OLS fit of the 

equation:  Guesst – Guesst-1=α + β*(Targett-1 – Guesst-1), for each subset of data indicated.16 

 What is apparent from Figures 6 and 7 is that subjects generally respond in a rational 

direction to their deviations from the winning guess in the previous round, as indicated by the 

upward slopes of all scatter-plot relationships.  In other words, the more the subject’s guess in 

                                                 
16 The OLS fit is meant to be a suggestive description of the scatter-plot relationship.  It is not meant to be a proper 
modeling of the data. 
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the previous round was above (below) the target, the more likely the subject was to decrease 

(increase) her guess in the following round.  The concentration of points on the horizontal axis in 

the treatment 2 plots (Fig. 6b, 7b) are due to the significantly higher number of equilibrium 

guesses in treatment 2—for this reason also most guesses are below the “target” in treatment 2, 

because as long as the average guess is at least 154, then p=1.3 times the average guess is 200, 

making it impossible to have guesses above the target in such cases. 

 These Figures 6 and 7 seem to indicate similar patterns of guess response to feedback 

regardless of one’s sleep condition or time-of-day.  Following Nagel (1995), we can examine the 

data’s conformity to a qualitative learning model that posits that subjects adjust their guess in the 

direction of what would have been the optimal adjustment factor:  the learning-direction theory.  

Nagel (1995) defines subject i’s adjustment factor and the optimal adjustment factor as 

(1)    

(2)  

 

where (mean)t-1 is set equal to the midpoint of the guess interval for the first round of the 

treatment.  A “good” adjustment, as defined by this qualitative learning model, is one where a 

subject changes her adjustment factor to correct the direction of the previous round’s error.  That 

is, if at > aopt, t  then at+1 < at  represents a good adjustment (and at < aopt, t  implies at+1 > at).  She 

restricts her analysis to the subsample of the data where the subject did not win or share in the 

prize in the previous round, as such rounds present subjects with distinct feedback.17  By doing 

                                                 
17 The data suggest that following a round where the subject win’s or shares in the prize (14% of the total subject 
rounds), adjustments are much less likely to follow the learning-direction theory—only 41% do so compared to the 
75% of subject-rounds reported above who respond to no-win feedback.   
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so, we have a sample of N=787 treatment 1 and N=297 treatment 2 guesses in response to a no-

win outcome in the previous round. 

 Similar to proportions in Nagel (1995) for p parameters less than 1, we find that in the 

pooled data 75% of subject guesses in treatment 1 are consistent with learning-direction theory.  

In treatment 2, the proportion is just 56%, though this is still statistically different from random 

adjustment factor alterations based on a coin flip (binomial test:  p=.03 for the one-sided test 

against the null hypothesis that p=.50).  Table 5 shows the results of evaluating the learning-

direction theory compared to a more naïve rule-of-thumb adjustment process by which subjects 

just continue to adjust their guess in the direction of the predicted equilibrium, independent of 

what the winning guess was in the previous round, equilibrium guess adjustment.  For the most 

part, there are no statistically significant differences between the proportion of guesses 

conforming to the learning-direction model across the subsamples of sleep deprived versus well-

rested, or circadian matched versus mismatched subjects (two-sample proportions test:  p-value 

>.10 in all cases).    A marginal result is that learning-direction may be utilized more often in 

treatment 2 when a subject is well-rested compared to sleep-deprived.  While the result is 

statistically insignificant (p=.12) with the two-sample proportion test, it is marginally significant 

(p=.09) using the binomial test.  Alternatively, by sliding the subjective cutoff for coding of 

SD=1 to nightly average sleep of 6 hours or less (instead of 6.5 hours or less), the result is 

significant using the two-sample proportions test (p=.09).  Though weak, this marginal result is 

suggestive that a further examination of learning effects should be on the agenda for future 

research.  A use of the continuous sleep and circadian mismatch scale variable reveals that 

neither is a significant predictor of the probability that a subject utilizes the learning-direction 
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rules (results available on request).  With respect to use of the naïve adjustment model, we also 

find no differences in use of either learning rule based on sleep or circadian effects.  

 For a given sleep state (SD or WR, MM or CM) we can also examine whether a subject is 

more likely to use the more sophisticated learning-direction model or the naïve equilibrium guess 

adjustment model.  In treatment 1, we fail to reject the hypothesis that the proportion of guesses 

conforming to learning-direction is equal to the proportion conforming to equilibrium guess 

adjustment for SD or WR subjects (two-sample proportions test:  p-value >.10).  We find the 

same result for treatment 1 comparing the MM and CM subsamples.  So, the various sleep sub-

groups have no significant effect on the propensity to use one type of learning model versus the 

other.  For treatment 2, in all comparisons we find that subjects are more likely to use the naïve 

equilibrium guess adjustment model than the learning-direction model, which is not surprisingly 

the less complex decision environment of the two treatments.  Though a variety of learning 

models may be compared using our data, the purpose of our paper is not a comprehensive 

comparison of learning models.  Most all learning models utilize some type of reinforcement 

learning based on previous round outcomes or payoffs.  As such, Figures 6 and 7 seem to 

highlight what our simple analysis concludes—subject guesses seem to adjust in a rational way 

to deviations from the target in the previous round, but this adjustment process does not appear 

to differ when a subject is sleep-deprived or circadian mismatched. 

  

Conclusions 

 We replicate the well-known p-beauty contest experiment with a unique but relevant 

behavioral twist.  Subjects are objectively monitored for a one-week period prior to the 

experiment to generate a measure of their average nightly hours of sleep.  Sleep is not 
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manipulated, however, but we utilize the cross-sectional variation in voluntary sleep choice to 

estimate behavioral sleep quantity effects.  Because sleepiness and wakefulness are known to 

follow a circadian rhythm, we utilize morningness/eveningness preferences generated from a 

first-stage survey to then randomly assign subjects to either a morning (8:00 a.m.) or evening 

(8:00 p.m.) experiment session.  Thus, subjects are matched or mismatched to more versus less 

optimal times-of-day, given their biological sleep preferences.  The result is a design allowing us 

to examine the effects of voluntary sleep restriction and circadian mismatch on iterative 

reasoning and learning/adaptation in a repeated p-beauty contest.  This is a behavioral treatment 

with important implications for a modern society that employs shift work, functions increasingly 

24/7, and has millions of Americans sleeping an average of less than 7 hours per night. 

 Our main results indicate that both voluntary sleep restriction and circadian mismatch 

produce statistically significant effects on initial round guesses in two distinct guessing game 

treatments.  Specifically, they lead to guesses farther from equilibrium.  In other words, our 

evidence indicates that sleep loss and circadian mismatch lead to inexperienced guesses that 

display lower levels of iterated reasoning.  The effects seem most robust in treatment 1, which is 

cognitively more challenging and requires infinite depth of reasoning to reach equilibrium.  We 

also estimation an apparent “optimal” level of nightly sleep at 6.5-7 hours of sleep per night, 

which is the range of estimated average nightly sleep in young adults.18  This is roughly 

consistent with recent commentary from sleep researchers that suggests that 7-7.5 hours of good-

quality sleep per night is reasonable (Horne, 2004).  With respect to circadian mismatch, we also 

estimate nonlinear effects that imply that moderate levels of mismatch may be more detrimental 

                                                 
18 See data reported by the National Sleep Foundation, which can be accessed at www.sleepfoundation.org 
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to iterative reasoning than more extreme levels.  This is perhaps due to compensatory effort 

when manipulated (experimentally) into an extreme mismatch time slot.  

 While we find significant behavioral effects on initial round guesses, voluntarily sleep-

deprived and circadian mismatched subjects converge towards equilibrium similar to well-rested 

and circadian matched subjects.  That is, the proportion of subject decisions that conform to 

Nagel’s (1995) simple learning-direction theory, as well as a more naïve rule of adjustment 

towards equilibrium, do not differ based on one’s sleep or circadian state.  Given the full 

information feedback that subjects receive after each round of our guessing games, it is perhaps 

not easy to disentangle the effects of subject learning, feedback effects, and adaptation.  Weber 

(2003) documents introspection-type learning in the guessing game with no information 

feedback, though much of the literature has examined feedback-learning.  Grosskopf and Nagel 

(2007) attribute equilibrium convergence in 2-player guessing games, though strategically 

different from n>2-player guessing games, to adaptation-based learning.  Because we do not 

manipulate information feedback in our design, it would be inappropriate to interpret our results 

as if sleep and circadian timing have no effect on any dimension of subject learning.  With full 

information feedback in groups of 8-10 subjects, adaptation may be relatively simple in our 

experiments.  A more comprehensive examination of sleep and learning seems warranted. 

Our knowledge of the homeostatic and circadian influences on the biological need for 

sleep, and the extant literature of (mostly) controlled sleep studies, led to the hypotheses of 1) 

reduced application of iterative reason, and 2) adverse effects on learning.  Though our data 

support only the first of these hypotheses, our findings have important implications for our 

modern society of increasing levels of voluntary sleep loss and circadian mismatching due to 

shift work.  And, given our examination of relatively mild levels of sleep loss and decision 
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making at reasonable times of day, the behavioral effects we find should send an important 

message to those operating regularly at more adverse states of sleep loss or circadian mismatch. 
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Table 1:  Chronotype and Time Session assignments 

 Time Session for Decision Experiment 
Summary statistics (N, averages, standard deviations) 

Chronotype 8:00 a.m. (morning) 8:00 p.m. (evening) 
 
 
 

Morning 
type 

N=24 (15 female) 

Age=23.9 ± 9.4 years old 

Average MEQ score= 17.42 ± 1.5 

Average nightly sleep=374 ± 65 min 

Average wake time=8:12 a.m. ± 73 min 

Average bed time=12:21 a.m. ± 73 min 

Average sleep efficiency*=82% ± 5.0% 

N=26 (5 female) 

Age=26.9 ± 12.1 years old 

Average MEQ score=18.07 ± 1.8 

Average nightly sleep=379±61 min  

Average wake time=7:37 a.m. ± 60 min 

Average bed time=12:03 a.m. ± 77 min 

Average sleep efficiency*=80%±6.7% 

 
 
 

Evening 
type 

 

N=27 (10 female) 

Age=20.7 ± 2.5 years old 

Average MEQ score=7.15 ± 2.2 

Average nightly sleep=389 ± 49 min 

Average wake time=10:04 a.m. ± 72 min 

Average bed time=1:46 a.m. ± 66 min 

Average sleep efficiency*=81% ± 7.1%  

 

N=25 (16 female) 

Age=21.4 ± 5.4 years old 

Average MEQ score=6.56 ± 1.32 

Average nightly sleep=380 ± 64 min 

Average wake time=9:59 a.m. ± 94 min 

Average bed time=2:03 a.m. ± 61 min 

Average sleep efficiency*=84% ± 4.8% 

*sleep efficiency is the percentage of the time within the subjects nightly attempted sleep 
intervals that is scored as actual sleep.  That is, sleep efficiency takes into the time taken to fall 
asleep as well as any bouts of wakefulness during the night as measured by the actigraphy. 
Note: ± indicates standard deviation. 
 

Table 2:  Initial round guesses (round 1 or 11) 

 
Treatment 1 

Mann-Whitney ranks-sum 
test (one-tailed tests) 

GuessSD = 60.15 
 

GuessWR = 48.36 GuessSD  > GuessWR (p=.02) 

GuessMM = 61.15 GuessCM = 48.01 GuessMM  > GuessCM (p=.02) 
 
 

Treatment 2 

 
Mann-Whitney ranks-sum 

test (one-tailed tests) 
GuessSD = 150.80 
 

GuessWR = 160.62 GuessSD  < GuessWR (p=.03) 

GuessMM = 152.25 GuessCM = 157.98 GuessMM  = GuessCM  (p>.10) 
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Table 3:  Levels of Iterated Dominance by Sleep State 
     (initial round data) 
 
Level of iterated dominance 

[guess interval] 
Percentage
reported 

Percentage
reported 

 Percentage 
reported 

Percentage
reported 

 
TREATMENT 1 

SD 
(n=56) 

WR 
(n=46) 

 MM 
(n=53) 

CM 
(n=49) 

R(0) 
[70,100] 

50.00 28.26  49.06 28.57 

R(1) 
[49,69] 

8.92 19.57  13.21 14.29 

R(2) 
[34,48] 

21.42 23.91  16.98 28.57 

R(3) 
[24,33] 

7.14 8.70  9.43 6.12 

> R(3) 
[0,23] 

12.5 19.57  11.32 20.41 

 
TREATMENT 2* 

SD 
(n=56) 

WR 
(n=46) 

 MM 
(n=53) 

CM 
(n=49) 

R(0) 
[100,130] 

28.57 13.04  16.98 26.53 

R(1) 
[131,169] 

29.29 41.30  45.28 34.69 

R(2) 

[170,200] 
32.14 45.65  37.74 38.78 

*In treatment 2, a maximal guess of x=200 implies level of iterated dominance R(2), so we are 
unable to identify higher-level reasoners in treatment 2. 
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Table 4:  OLS estimation of initial round Guess (st. errors in parenthesis) 

Variable Treatment 1 Treatment 2 
Constant 395.77 

(82.98)*** 
 

-32.42 
(79.82) 

Sleep Quantity -1.92 
(.44)*** 

 

.93 
(.42)** 

Sleep Quantity-squared .0024 
(.00057)*** 

 

-.001 
(.00055)** 

Mismatch Scale 129.74 
(36.09)*** 

 

-57.97 
(34.72)* 

Mismatch Scale-squared -103.03 
(34.95)*** 

 

64.51 
(33.62)* 

R2 .26 .14 

*,**,*** indicate significance at the .10, .05, and .01 levels, respectively for the two-tailed test. 

 

Table 5:  Summary of Learning Model Performance 
 (subset of data following no-win feedback) 
 
     
Learning-Direction SD=1 SD=0 MM=1 MM=0 
Treatment 1 (N=787) 75% (N=422) 75% (N=365) 75% (N=412) 75% (N=375) 
Treatment 2 (N=297) 53% (N=176) 60% (N=121) 55% (N=164) 56% (N=133) 

 
Equil. Guess Adj. 

    

Treatment 1 (N=787) 73% (N=422) 72% (N=365) 71% (N=412) 74% (N=375) 
Treatment 2 (N=297) 80% (N=176) 83% (N=121) 80% (N=164) 83% (N=133) 
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Figure 3a:  Subject 25=SD—Evening-type, 5 hours average sleep per night 
 (note:  average bed/wake times for evening-types given in Table 1) 
 

 
 
Figure 3b:  Subject 35=WR—Morning-type, 7.5 hours average sleep per night 

(note:  average bed/wake times for morning-types given in Table 1) 
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FIGURE 5b:  Initial Round Guess forecast as function of sleep 
quantity: Treatment 2 (mismatch level fixed at zero for forecast)
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FIGURE 6a:  Treatment 1 guess sensitivity to distance from target in previous round 
           (OLS prediction overlaid) 
 

 
FIGURE 6b:  Treatment 2 guess sensitivity to distance from target in previous round 
                         (OLS prediction overlaid) 
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 FIGURE 7a:  Treatment 1 guess sensitivity to distance from target in previous round 
                        (OLS prediction overlaid) 
 
 

 
FIGURE 7b:  Treatment 2 guess sensitivity to distance from target in previous round 
                         (OLS prediction overlaid) 


