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Willingness to Pay for Electric Vehicles and Their Attributes 

 
 

Abstract 

This paper presents a stated preference study of electric vehicle choice using data from a national web-based survey.  
In our choice experiment respondents were asked to choose between two electric versions of their preferred gasoline 
vehicle and their preferred gasoline vehicle. The electric vehicles varied in attributes and price.  The preferred 
gasoline vehicle was the opt-out alternative. Using the response data we valued five electric vehicle attributes: 
driving range, charging time, fuel cost saving, pollution reduction, and performance. Driving range, fuel savings, 
and charging time lead in terms of importance to respondents.  Individuals were willing to pay (wtp) from $35 to 
$75 for a mile of added driving range, with wtp increasing at a decreasing rate with distance.  They were willing to 
pay $425 to $3250 per hour of charging time (for a 50 mile charge), with wtp increasing at an increasing rate for 
shorter charges. Finally, people were capitalizing about 5 years of fuel saving into the purchase price of an electric 
vehicle. We simulated our model over a range of electric vehicle configurations and found that people with the 
highest values for electric vehicles were willing to pay a substantial premium. At the same time, our results suggest 
that battery cost must drop significantly before electric vehicles are economic.    
 
 

 

I. Introduction 

Concerns about climate change and energy security along with advances in battery 

technology, have stimulated a renewed interest in electric vehicles. The Obama administration 

has set a goal of one million plug-in vehicles on the road by 2015 and has introduced laws and 

policies supporting this goal. These include multi-billion dollar investment in automotive battery 

manufacturing, tax credits and loans for plug-in vehicle manufacturing and purchase, and 

research initiatives. Some states have adopted initiatives as well. Encouraged by these actions, 

along with advances in lithium-ion battery technology and recent success stories for hybrid 

electric vehicles, automakers have begun a major push to develop plug-in battery vehicles.  

Indeed, all major automakers have R&D programs for electric vehicles (EVs) and have indicated 

their intentions to begin mass production within the next few years.1  

                                                        
1 Interest in electric vehicles is not new.  In 1900 nearly 40% of all cars were electric, Thomas Edison experimented with electric 
vehicles, and there was a notable surge in interest during the oil crisis in the 1970s. For an interesting historical account of 
electric vehicles see Anderson and Anderson (2005). 
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We are interested in the potential consumer demand for electric vehicles and whether or 

not they might become economic.  To this end, we used a stated choice experiment to estimate 

how much consumers are willing to pay for EVs with different design features.  We focused on 

pure electric vehicles (EVs) rather than plug-in hybrid electric vehicles (PHEVs). Economic 

analyses of EVs to date have not been favorable, largely due to high battery cost, short driving 

range, long charging times, and limited recharging infrastructure.  However, recent advances in 

technology suggest that driving range can be extended, charging time shortened, and battery cost 

lowered.   Also, after a few years of mass production, the unit cost for EVs, like most new 

technologies, is likely to fall.  The time seems right for another look at the economic potential for 

EVs. The latest round of published studies, which we discuss shortly, were completed around the 

year 2000.   

We used data from a nationwide survey of potential car buyers in 2009.  We offered 

people hypothetical electric versions of their preferred gasoline vehicle at varying prices and 

with varying features (eg, driving range and charging time). Then, using a latent class random 

utility model we estimated the demand for EVs.  Based on these data, we identified two classes 

of drivers, which can be roughly labeled as EV-oriented and GV-oriented.  Using parameter 

estimates from our model we then estimated respondents’ willingness to pay (or willingness to 

accept compensation) to switch from their preferred gasoline vehicle (GV) to several 

hypothetical EVs.  Finally, we compared these estimates to the corresponding incremental 

battery cost for converting a GV to the same hypothetical EV.   

  Most demand studies for EVs to date, like ours, have used stated preference analysis in 

some form.  The earliest studies started in response to the 1970s oil crisis. Beggs et al., (1981) 

and Calfee (1985) are probably the best known. Both targeted multicar households with driving 
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and demographic characteristics likely to favor EVs. Both found low market share for EVs and 

“range anxiety” as the primary concern for consumers. Both also found significant preference 

heterogeneity.  

Another wave of studies started in the early 1990s in response to California’s zero-

emission vehicle mandate. These studies were interested in predicting the potential demand for 

EVs in California. Major among these were Bunch et al. (1993), Brownstone et al. (1996), and 

Brownstone and Train (1999). There were also some outside California including Tompkins et 

al. (1998), Ewing and Sarigollu (2000), and Dagviski et al. (2002). These studies differ from the 

earlier ones in many ways. First, they moved from targeting multicar households to targeting the 

entire population. Second, they included a measure of emission level as a standard vehicle 

attribute. Third, the choice set typically included other vehicle technologies such as concentrated 

natural gas, hybrid electric, methanol, and ethanol as an alternative substitute for conventional 

gasoline vehicles. Finally, they employed some form of survey customization (different 

respondents receiving different choice options) to increase the relevance of the choice task. A 

common finding in these studies was that EVs have low likelihood of penetrating the market. 

Limited driving range, long charging time, and high purchase price were identified as the main 

concerns for consumers. They also found that people were willing to pay a significant amount to 

reduce emission and save on gas (see especially Bunch et al., 1993; Tompkins et al., 1998; 

Ewing and Sarigollu, 2000). Table 1 is a summary of past EV studies for reference.   

Our analysis builds directly on this body of work. Our model contributes to the literature 

by using more recent data, by using a method that focuses respondents on EV attributes (we offer 

respondents “EV-equivalents” of their preferred GV to control for extraneous features), by 
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estimating a latent class model, and by comparing willingness to pay or willingness to accept 

compensation estimates (wtp/wta) to battery cost projections.  

The balance of the paper is organized as follows. Section II discusses our data and lays 

out our study design.  Section III develops an econometric model for analyzing the data. Sections 

IV and V present the main findings, and Section VI concludes.  

 

 

 

II. Survey, Sampling, and Study Design 

 

We used an internet-based survey developed between September 2008 and October 2009. 

During this period we designed and pretested the survey and conducted three focus groups and 

three pilot pretests. We also presented our study design at two academic workshops.2  After each 

focus group and pretest, we refined the content and organization of the survey. Among the 

features adjusted were the description of the vehicles, amount and flow of information, length of 

the survey, and levels used for all vehicle attributes. 

The final version of the survey had four parts: (i) background questions on present car 

ownership and driving habits, (ii) description of conventional EVs followed by two choice 

questions, (iii) description of vehicle-to-grid EVs followed by two more choice questions, and 

(iv) a series of attitudinal and demographic questions.  The survey included a brief “cheap talk” 

script, intended to encourage realistic responses in our hypothetical setting.   The survey also 

included debriefing questions to get respondents' feedback regarding the relevance of each 

                                                        
2 Paper presentation at the Academy of Marketing Sciences Annual Workshop: Marketing for a Better World, May 20-23, 2009. 
and poster presentation at the Association of Environmental Resource Economists Workshop: Energy and the Environment, June 
18-10, 2009.  
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attribute in their choice and to ascertain the clarity and neutrality of the information provided on 

the survey. The vehicle-to-grid EV choice data from part (iii) are not analyzed in this paper.3   

 The first stage of the survey covered the respondent’s current driving habits, vehicle 

ownership, and details on the vehicle they are most likely to purchase next.  The latter included 

the expected size, type, price, and timing of purchase.  Next was a descriptive text describing 

similarities and differences of EVs and GVs.  Then respondents were asked two choice questions 

in a conjoint format.  A sample question is shown in Figure 1.  In each of the two choice 

questions, respondents were asked to consider three vehicles: two EVs and one GV. The GV was 

their “preferred gasoline vehicle” and was based on the response they gave to a previous 

question on the type of vehicle they were most likely to purchase next (it could be gasoline or a 

hybrid like a Toyota Prius).  The preferred GV and the amount of money the respondent planned 

to spend was mentioned in the preamble to the question, reminding the respondent what they had 

reported previously.  Because the survey was web-based, the text of questions could include 

values from or be adjusted base on prior answers.  In each three-way choice, we treated the GV 

as the opt-out alternative.  The two EVs were described as electric versions of their preferred 

GV.  Respondents were told that other than the characteristics listed the EVs were identical to 

their preferred GV. This allowed us, in principle, to control for all other design features of the 

vehicle – interior and exterior amenities, size, look, safety, reliability, and so forth.   By holding 

these attributes constant, we were able to focus on a key set of attributes of interest without the 

choice question becoming too complex. The attributes and their levels are shown in Table 2.4  

                                                        
3 Vehicle to Grid (V2G) electric vehicles allow owners to sell their battery capacity to electric grid operators during times the 
vehicle is not driving, and thus have the potential of making EVs more economical (Kempton and Tomic 2005).  In the V2G 
choice questions we analyzed different V2G contract terms to establish their feasibility. These data will be analyzed in a second 
paper.  
4 A drawback of this strategy is that we miss substitution across vehicle types, such as buying a new smaller EV instead of a new 
larger GV. People my employ this type of substitution to lower the purchase price for an EV.   



  7 

Most of the attributes are self-explanatory and capture what we expected would matter to 

car buyers in comparing EVs and GVs – driving range, charging time, fuel saving, pollution 

reduction, performance, and price difference.  Price was defined as the amount the respondent 

would pay above the price of the respondent’s preferred GV.  This puts the focuses on the 

tradeoff between the extra dollars being spent on an EV and the attributes one would receive in 

exchange. Charging time was defined as the time needed to charge the battery for 50 miles.  The 

average vehicle is driven less than 40 miles/day, so this is a little more than a typical daily 

charging time to recharge, or enough to extend a trip 50 miles. The electric refuel cost was 

defined in gas-equivalent terms (e.g. “like $1.50 per gallon gas”). This pretested far better than 

the other measures we considered and was independent of miles driven by the respondent.5  

Pollution reduction was included as a measure of the desire to buy more environmentally 

beneficial goods.  Finally, acceleration was included as a proxy for performance differences 

between EVs and GVs.   

  The choice sets were generated using efficient choice design (Kuhfeld et.al, 1994, Huber 

and Zwerina, 1996). We used a linear design to generate choice sets in a pilot study and then 

used the parameter estimates from the pilot study to generate our design (non-linear) for the final 

survey. We used SAS's choice macro function (Kuhfeld, 2005) to search for the efficient designs.  

Our experiment had a D-efficiency of 4.8. The design had 48 choice sets in 24 blocks. The 

blocks were randomly assigned to respondents during the survey. 

 The response options for our choice experiment include a ‘yea-say’ correction shown as 

the last response at the bottom of Figure 1. We were concerned that respondents might choose an 

electric option to register their support for the concept of EVs even though they would not 

                                                        
5 We also considered defining fuel savings as cost to fully charge the battery, absolute fuel savings in dollars per year for EV 
versus GV, or fuel cost savings per mile driven. 
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actually purchase an EV at the cost and configuration offered.  The yea-say option allowed 

people to say “I like the idea of EVs (registering favor with concept) but not at these prices 

(showing their real likelihood of purchase)”.  We conducted a treatment on this variable to see if 

it would indeed have any effect. About one-third of the sample had the yea-say correction 

response included.  Table 3 shows the breakdown by responses to all our choice experiment 

questions. There is a nice distribution across the response categories suggesting that our levels 

were offered over reasonable ranges – about a 50-50 split between EV and GV. Also, there 

appears to be very little yea-saying.  That is, even with the additional response option, the 

selection of EVs droped by only 2%. 

 Our sample was selected to include only US residents over 17 years old intending to 

spend more than $10,000 the next time they purchase a vehicle. We used the $10,000 cut-off 

because we felt few people in this group would be in the market for EVs.  Our sample size was 

3029.  The sample was drawn from a panel of online respondents maintained by Sample Survey 

International (SSI).  Use of this type of panel has the advantage that the respondents will answer 

questions administered by computer, but the disadvantage that panelists are those willing to do 

so repeatedly on a variety of topics.  However, SSI will draw samples that are demographically 

representative of the US population.  We were willing to accept the bias of a sample of people 

who can use computers because we thought few outside that category would buy an electric 

vehicle and it allowed us design our survey using an internet format and that was important for 

skip patterns and tailoring questions to respondent specific data such as car type on next 

purchase. We have provided descriptive statistics in Table 4. These include all of the 

demographic variables used in our model.  
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 The sample was drawn from SSI to mirror the US population on census variables, apart 

from our prescreening criteria.  As shown in Table 5, the sample is similar to the national census 

on most variables.  We have nearly the same age distribution, income distribution and population 

size by region as the national census. Our sample somewhat under-represents men and less 

educated persons. The latter is probably due our prescreening exclusion of respondents 

purchasing cars less than $10,000. Also, our sample is close to national statistics in the number 

of vehicles per household and ownership of residence even though the sample was not selected 

based on these criteria.  

 

 

III. A Latent Class Random Utility Model 

 

We estimated a latent class random utility model using our choice data (Swait, 1994)6. 

The random utility portion is a discrete choice model where respondents choose one of the three 

vehicles offered in our choice experiment – two electric and one gasoline.  See the questions 

shown in Figure 1.    

Using each person’s preferred GV as the opt-out alternative and letting the EV depend on 

the vehicle characteristics in our experiment gives the following random utilities for a given 

person on each choice occasion 

 

(1)             

                                                        
6 We compared mixed logit and latent class models (actually a mixed logit variant) on the basis of estimated parameters, non-
nested test statistics, and within sample prediction. The latent class model provided better fit than the mixed logit model.  
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The vector includes all of the attributes used in the choice experiment: driving range, charging 

time, pollution reduction, performance, and fuel cost saving. Under the usual assumption of 

independent and identically distributed (iid) extreme value errors in (1), we have the following 

standard logit probability for vehicle choice for any given person  

 

(2)               

 

The latent class portion of the model allows for preference heterogeneity across the 

population. The model assumes there are C preference groups (classes) where the number of 

groups is unknown. Each group has its own set of random utilities with its own parameters in 

equation (1).  Class membership is unknown. The model assumes each person has some positive 

probability of membership in each preference group and assigns people probabilistically to each 

group as a function of individual characteristics.  The number of groups is determined 

statistically.  The probability of observing a respondent select a vehicle in our latent class model 

is 
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(3)              

 

The term is the probability of membership in class c. is the logit probability 

from equation 2, now defined for class c.  There are C sets of  and C-1 sets of . Only C-1 

sets of the latent class parameters are identified. The classes are said to be ‘latent’ because 

respondents are not actually observed being the member of any given preference group.  Indeed, 

in our interpretation of the model, we assume no membership in any class. Rather, we assume 

each person has some weighted membership across classes. The parameters are estimated using 

maximum likelihood estimators and the number of preference groups is determined using a 

Bayesian Information Criterion (BIC). We will discuss these results and the BIC in the next 

section.   

 The LC model captures preference heterogeneity by allowing different preference 

orderings over the vehicles, with some classes having greater proclivity for buying electric than 

others.  Shonkwiler and Shaw (2003) and Swait (2007), show that the LC model is not 

constrained by the iia property of the MNL model. However, as pointed out by Greene and 



  12 

Hensher (2003), the LC model assumes independence of multiple choices made by the same 

individual.   

 

 

 

IV. Estimation Results 
 

Latent Class Membership 

  The class membership portion of our model is shown in Table 6. Table 4 provides 

definition and descriptive statistics for all the variables used in the model.  These are divided by 

variables pertaining to demography, driving distance, car type desired, gas price expectations, 

potential access for charger installation, and tendencies toward green lifestyle. We estimated the 

model using 2, 3, and 4 latent classes.  With four classes, the value of the estimated parameters 

started to deteriorate, giving large standard errors and inflated parameter estimates. This is 

considered an indication to stop looking for more classes (Louviere et al., 2000, pp. 289). We 

computed information criteria (Bayesian and Akaki) for each latent class model. 7 The Bayesian 

criterion selects a two-class model while the Akaki criterion selects a four-class model. We 

decided to use the two-class model.   The preference classes divided neatly into a class of EV-

oriented consumers and a class of GV-oriented consumers and interpretation of the parameters 

was clearer.  

 Santini and Vyas (2005) suggested two classes. What they refer to as an early group (a 

group that includes early adopters and early buyers), roughly corresponds to our EV class. These 

include consumers interested in EVs either because they are fascinated with the technology or 

because they want to help the environment (or reduce dependence on oil) and consumers 
                                                        
7 Following Swait (2007), these measures are defined as follows: AIC= -2(LL (β)-K) and BIC = -2LL (B) + K*log (N), where LL 
(B) is log likelihood value at convergence, K is the total number of parameters estimated, and N is number of observations. The 
class size that minimizes the BIC and AIC is the preferred class size. 
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interested in EV to save fuel cost.  Our model shows that a respondent has a greater EV 

orientation if, among other things, he or she is generally interested in new products, plans to buy 

a hybrid, has made changes in life style and/or shopping habit to help the environment, and 

expects gas prices to rise in the future.  

 The parameter estimates and odds ratios for the class membership model are shown in 

Table 6. The parameters are normalized to the GV-oriented class, so the parameters are 

interpreted as the probability of being EV-oriented versus GV-oriented or a person’s EV-oriented 

weight. The results show that the following variables increase a respondent’s EV-orientation 

with statistical significance 

 
 Being younger  
 Expecting higher gas prices in the next 5 years 
 Having made a shopping/life style changes to help the environment in the last 5 years 
 Likely to buy a hybrid gasoline vehicle on their next purchase 
 Having a place to install an EV outlet at home  
 Likely to buy a small or medium-sized passenger car on next purchase 
 Having a tendency to buy new products that come on to the market 
 Having at least 1 drive per month longer than 100 miles 
 Being male 

 

The first seven were expected.  The next, having one or more frequent long drives a month, was 

unexpected.  We had thought that people making more long drives would be less inclined to buy 

an EV due to issues related to driving range.  This result, which we also saw in some of our 

pretests, may come from an interest in saving fuel. People traveling further distances pay more 

for fuel and stand to save more from EVs.  Also, our variable for number of long drives does not 

measure a person’s average daily driving distance. We had no expectations on the sign for 

gender, and found, all else constant, that men are more EV-oriented.  



  14 

 The odds ratios shown in Table 6 give the relative odds of a person being in one class 

versus the other for a given attribute. For example, the odds ratio of 2.2 for a young driver 

indicates that a person under 35 years old is 2.2 times more likely to be EV-oriented than GV-

oriented.  The highest odds ratios are 3.3 for having a place for an electric outlet at home, 2.9 for 

people having made a major change in their life style in the past 5 years to help the environment, 

2.3 for being a likely purchaser of a hybrid gasoline vehicle, and 2.2 for being under 35 years 

old. The finding on hybrids is not surprising but reinforces the notion that EVs will compete with 

hybrids more than conventional gasoline vehicles.    

 Contrary to expectations, income and being a multicar household were not important 

predictors in our class membership model. Multicar households are generally perceived as more 

amenable to EVs than single car households. In fact, the early EV market studies sampled only 

multicar households (Beggs et al.1980, Calfee, 1985 and Kurani et al.1996). The logic for this 

stems from the fact that EVs have limited driving range and multicar households would not be 

constrained by this since they have a reserve car.  We see no evidence to support this 

assumption. Ewing and Sarigollu (2000) had a similar result. 

 Finally, we tested for regional difference in preference for EVs. We divided the United 

States into 10 regions.  California and Florida were each treated as their own region. When we 

included only regional dummies in our latent class model, California, Florida and the 

Northeastern United States were most EV-oriented, the Western and Midwestern states most 

GV-oriented.   However, when the covariates shown in Table 6 are included in the model, the 

regional differences largely vanish suggesting that it is the characteristics of people, not where 

they are from, that predicts class membership.  The regional results are not shown in our tables. 
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Random Utility Model 

 

The vehicle attributes (Δpi  and xi ) used in the random utility portion of our model are 

shown in Table 2.  The model is shown in Table 7 along with a multinomial logit version of the 

model for comparison. We assume price and fuel cost have a linear effect.  All other attributes 

are specified as categorical variables based on Wald and likelihood tests that showed nonlinear 

versions give a better fit. The category exclusions or reference levels (required for identification) 

are the least favorable level in each case. We also tested for potential interaction of vehicle 

attributes with several demographic variables.  Of those tested, only the interaction between 

price of EV and the price for the respondent's next vehicle was found to be significant.  This is 

the only interaction we included in the model.8   

 Most of the parameters have expected signs.  Also, the relative size of the parameters for 

the attributes specified as stepwise dummy variables perform as expected. For example, the 

coefficient estimates show a preference ordering for range that increases consistently with more 

miles. This basic step-wise consistency holds for all attributes across the two classes as well as in 

the MNL model.  Finally, the coefficient on price is statistically significant and negative in all 

instances.  It is clearly an important predictor as one would expect.  

The LC model has a higher likelihood than the MNL model and, when tested, is 

statistically preferred.  The minimum, mean, and maximum probability of being EV-oriented are 

6%, 53%, and 97%. So there is considerable heterogeneity in our data. Several of parameters that 

are significant in the MNL model are only significant for one class in the LC model.   Also, in a 

                                                        
8 Among the interactions considered were: range and annual miles driven, range and multicar household, range and driving more 
than 100 miles a day, fuel cost and annual miles driven, fuel cost and expected gas price, pollution and changes in life style. 



  16 

few cases the differences in the parameters across the two classes is sizable and significant.  A 

good example of this is fuel saving (fuel cost). It is significant in the MNL model, but significant 

only in the EV-oriented portion of the LC model.  

 The last three columns of Table 7 are implicit values for the attributes.  These values are 

computed by simply dividing the attribute coefficient estimate by the coefficient estimate on 

price.9   The third of these three columns is a probability weighted average for the entire sample 

since each person has some positive probability of being in each class.  

The coefficient estimate on the EV dummy variable, which is one of the key variables 

defining our two classes, indicates a wide separation in willingness to pay for EVs.  The value 

represents the premium a respondent would pay or compensation a respondent would ask for to 

switch from a GV to an EV version of their preferred vehicle with base level attributes ignoring 

any adjustment for fuel cost (continuous variable in the model). The EV-oriented portion of the 

model would pay a premium of $2,357, while the GV-oriented portion is would ask for 

compensation of $22,006. The weighted average is compensation of $7,060.  The 

compensation/premiums for various EV types including adjustments for fuel cost are presented 

in the next section.   

 Another difference between the two classes is in the value of fuel saving.  The EV-

oriented is more fuel conscious than the GV-oriented.  The EV-oriented portion has a willingness 

to pay of $4,853 for each $1.00/gallon reduction in fuel cost equivalent.  The GV-oriented 

portion has a willingness to pay of only $499 and that value is based on a parameter that is not 

statistically different from zero. This finding makes sense.  Respondents showing a greater 

interest in EV put more weight on fuel economy.  This is also consistent with our class 

                                                        
9 Since we include an interaction of price difference times expected price, we actually divide by an amount adjusted for expected 
price using the respondent's expected price in each instance.   
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membership model where the EV-oriented expect higher gas prices and hence greater concern 

for fuel saving.  The weighted average value across the two classes is $2,706. The average 

respondent appears to be capitalizing about 5 or 6 years of fuel savings into their vehicle 

purchase. Assuming that a car is driven about 12,000 miles/year at the US car average of 24 

miles/gallon, each $1.00/gallon reduction in cost is worth about $500 of fuel savings per year.10  

Considering the weighted results for the other conventional EV attributes in Table 7, the 

driving range increments have the highest value, followed by charging time, performance, and 

pollution reduction.  These are all relative to the baselines indicated in the table.  To the 

weighted average respondent, increasing range from 75 to 150 miles is worth over $5,600. 

Increasing it from 75 to 200 is worth over $9,200, and from 75 to 300 miles over $12,700.  These 

high values are consistent with other findings that driving range is a critical attribute in EV 

purchase.  Note that the values increase at a decreasing rate.  The per-mile incremental values are 

$75/mile (75 to 150 miles), $73/mile (150 to 200 miles), and $35/mile (200 to 300 miles).  

The average weighted values are computed for charging time for 50 miles of driving.  

Using the weighted averages, respondents value the initial increment, a reduction from 10 to 5 

hours, at over $2,000.  Going from 10 hours to 1 hour is worth nearly $6,000, and going from 10 

hours to 10 minutes is worth about $8,500.  Unlike the driving range values these increase at an 

increasing rate. The per-hour incremental values are $427/hour (10 to 5 hours), $930/hour (5 to 1 

hour), and $3,250/hour (1 hour to 10 minutes).  

The value of pollution reduction is the lowest of the attributes included.  With a 25% 

reduction over their preferred GV as a baseline and using the weighted values, people valued a 

50% pollution reduction at about $1,900, a 75% reduction at about $2,600, and a 95% reduction 

                                                        
10 During our survey the retail price of regular gasoline was about $2.80 per gallon and electricity was at about $1.00 
per “gallon” (6.25 kWh/.85*13¢/kWh). Assuming 4 kWh per mile for an electric sedan and 85% efficiency to fill 
up, fuel savings would be about $900 per year for buying electric versus gasoline.  
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at over $4,300.  The incremental values for going to 50% are not statistically significant. The 

EV-oriented class has higher value for moving to 95% lower while the GV-oriented has higher 

value for moving to 50% lower. Both classes have similar value for moving to 75% lower. 

Finally, improving vehicle performance from 20% slower to 5% slower than a person’s 

preferred GV, is worth nearly $2,600 using the weighted values. Increasing to 5% and 20% faster 

from 20% slower is worth about $5,100 and $7,300.  

 

 

V. Willingness to Pay for Different EV Configurations 

 

 

 

In this section we calculate respondents’ willingness to pay (wtp) or willingness to accept 

compensation (wta) for various electric versions of their preferred gasoline vehicle, and then 

compare these values to some projections of the added cost of producing electric versus gasoline 

vehicles.  Since future costs and EV configurations are largely speculative, we will present a 

range of estimates. We will also present a ‘test’ of the model that estimates the wtp/wta for an 

EV with attributes equivalent to the attributes of a GV.   We use these results to calibrate one set 

of estimates.  

 A person’s wtp/wta for an EV conditioned on being in class c is the amount of money 

that makes the person indifferent between an EV of a given configuration and a GV.  In our 

model that is the value of Δw  that solves the following equation within a given class 

 

(4) β pΔw + βxxi + εi = ε0   or  
.
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Since no person belongs entirely to one or the other class in our model and is instead part EV-

oriented and part GV-oriented, we use the following weighted average in our calculation for each 

respondent 

  

(5)  

 

where pev is probability of being in the EV-oriented class. Boxall and Adamowicz (2002) and 

Walmo and Edwards (2008) use this formulation.  

We begin with the ‘test’ of our model.  We constructed an EV that more or less mimics a 

contemporary GV.  Driving range is 300 miles, charging time is 10 minutes, pollution removal is 

0% changed, performance (acceleration) is the same, and fuel cost is $2.80/gal.  Fuel cost and 

pollution are the only attributes outside the range of our data in this simulation, and neither is far 

outside the range. The lowest pollution level offered was 25% removal and the highest fuel cost 

was $2.00. We used a simple linear projection for these attributes to simulate in these ranges.  

We simulated the model only over the sample of respondents expecting gas prices to be in the 

range of $2 to $4 over the next five years.  If our model were a good predictor, one would expect 

the wtp/wta for this EV to be near zero at least for the median person. That is, on average we 

expect people to more or less be indifferent between an EV and GV with nearly equivalent 

attributes.  If not, despite our efforts to purge the data of SP bias (respondents giving values that 

diverge from their true values because there is no actual commitment to purchase), some may 

remain.  

We have to be careful. There will, no doubt be some people who are willing to pay more 

and some less for an EV with nearly equivalent attributes to their preferred GV.  For example, 

!w = pev!wev = (1" pev )!wgv
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we included a set of questions leading up the choice experiment that asked people to indicate 

which attributes might matter to them in making an EV purchase. The purpose was to get people 

thinking about the attributes of EVs before making a choice. While being far from a 

commitment, the results suggest what might drive preferences and what might lead to wtp/wta 

for like EVs and GVs diverging.  For example, 64% of the respondents indicated that ‘lower 

dependence on foreign oil’ mattered a lot; 47% reported that ‘avoiding trips to the gas station’, 

mattered a lot, and 30% reported that ‘interesting new technology’ mattered a lot.  For these 

fractions of the sample at least, this suggests wtp’s for EVs above a like GV. Of course, saying 

these things and actually being willing to pay for them can be quite different. Also, there is 

obvious free-rider problem with ‘lower dependence on foreign oil’.  If everyone else buys EV, I 

can enjoy the security without having to pay myself. If everyone has behaves as such, EV 

purchases for the purpose of lowering dependence would be limited to only a few even though 

many may consider it important.   

There will also be respondents who require compensation for an EV equivalent to their 

preferred GV.  There is the simple of inertia of staying with what you know and some may not 

trust a new technology.  Approximately 33% of the sample said ‘unfamiliar technology’ mattered 

a lot in thinking about buying an EV.  In any case, we expect some deviation for equivalent EV 

and GV vehicles due to preference variation.   

  When we simulate the model we find a median wtp of $3,023 for an EV over a GV with 

like attributes. Over half of the respondents are willing to pay more than $3,000.  Given a sample 

with an average car purchase price of $23,000 for their next vehicle and an income of $60,000, 

these numbers suggest that there may be some lingering SP bias in our data. For this reason, we 

present two sets of wtp/wta estimates: standard and calibrated.  For the standard estimates, we 
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accept the model in our previous section as is. For the calibrated estimates, we use the same 

model but calibrated it to generate median wtp values of zero for an EV with characteristics 

identical to each respondent’s GV.  This amounts to adjusting the alternative specific constant on 

the EVs in our model until the zero median result is achieved. This follows an approach 

suggested by Train (2009, p. 66-7) in a somewhat different context and gives us a model with 

half of the sample be willing to pay more for an EV equivalent to a GV, and half willing to pay 

less. The spread using the calibrated model for the middle 50% of the population (from the 25th 

to the 75th percentile) is -$1,816 to $3,178 with a mean value of $0. This model preserves the 

trade off among attributes in our model discussed in the previous section.  In the spirit of 

allowing the reader to draw his/her own conclusions from the data we will present both the 

standard and calibrated estimates.  

We considered six hypothetical EVs in our wtp/wta estimation. All configurations are 

within the range of our data. Table 8 shows the assumed levels for each configuration where A is 

the least desirable and F is the most desirable.  Table 9 shows the standard and calibrated 

wtp/wta estimates for each. While actual configurations are uncertain, most are likely to fall 

somewhere in this range of attribute combinations. We report where current vehicles fall in our 

range of configurations in the second to last column of Table 10. This list is incomplete, but most 

fall in the B to D range.  

Figure 2 is a box-whisker plot of standard wtp/wta for our six configurations over our 

sample of respondents. The EV attributes improve as you move from left to right in the graph. 

The share of drivers willing to pay a premium naturally increases as the attributes of the EV 

improve.   The median wtp for our six configurations using the standard (calibrated) model 

ranges from -$9,221 to $14,164 (-$12,395 to $9,625).  For configuration B 
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(75mi/5hrs/50%pollution/5%slower/$1gal) the median wtp from the standard (calibrated) model 

is -$5,070 (-$8,243) and the maximum over the sample is $687 (-$4,762).  For configuration E 

(200mi/1hrn/50%poll/20%faster/$1gal) the median wtp is $9,406 ($6,234) and maximum is 

$18,296 ($12,820).  So, our wtp/wta estimates, as one would expect from the parameters 

estimated in our model, are quite sensitive to the vehicle’s configuration of attributes. Fuel 

economy and performance play an important role in these calculations. Consider configuration E.   

Driving range (200 miles) is worse than most GVs, and charging time (1 hour for 50 miles) is 

longer than a fill up.   The other attributes (fuel economy, performance, and pollution reduction) 

are better. When we estimate wtp for configuration E using $2.80/gal gasoline, so there is no fuel 

saving over a conventional gasoline vehicle, the median wtp in the standard (calibrated) model 

falls from $9,406 ($6,234) to $5,614 ($XXX).  With performance set to the same level of a 

gasoline vehicle (fuel economy set at $1.00/gal) the median wtp is $6,592 ($XXX).  When fuel 

economy and performance are set to levels comparable to a gasoline vehicle, wtp is $2,799 

($XXX). Fuel economy and performance are obviously important drivers in our results. 

Now we consider the added cost of producing an electric versus gasoline vehicle and 

compare it to our wtp/wta estimates for our six configurations. Our intention here is not to 

conduct a rigorous cost analysis, rather it is to make a rough approximation for comparative 

purposes. Indeed, we only consider battery cost as it varies for different driving ranges.  We 

ignore installation of the charger, the cost of boosting acceleration/performance, and differences 

in maintenance costs.11 We also ignore the difference in the cost the electric versus gasoline 

                                                        
11 Consumer Reports (Cars Blog 9/3/2010), for example, estimates that the simplest charging system for a 
Nissan Leaf is around $2000.  Boosting acceleration/performance is tricky to estimate. Once a battery is 
configured to operate at highway speeds, boosting acceleration/performance at the margin is not expensive.  
Given the value respondents place on acceleration/performance, this is an important finding.  If EVs are 
successful, we would expect most, if not all, to be on the higher performance end.  With respect to 
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motor, which probably favors electric. And finally, we ignore any relative cost differences that 

may arise for different vehicle sizes. While the list is long, battery cost is by far and away the 

largest factor that makes EVs more expensive than GVs. We hope our first cut encourages others 

with better knowledge of the cost structure to make further comparisons that embody these 

elements of cost.  

The Department of Energy’s current cost estimates for its near term automotive battery 

‘goals’ are 

 

 $1000/kWh (DOE stated current cost) 

 $500/kWh (DOE goal for 2012) 

 $300/kWh (DOE goal for 2014) 

The second and third are goals established by the DOE as part of their Energy Storage R&D 

program (Howell, 2009).  We will use these DOE figures, although actual commercial products 

already sold are both above and below them.  For example, looking at current vehicles, it appears 

that the GM Volt, a plug-in hybrid, at 20 kWh  (only 10 kWh usable) is above the $1000/kWh 

DOE “current cost”, whereas the Leaf, Tesla, eBox and Think are already selling vehicles with 

apparent battery costs in the $600-$700/kWh range, which approach the DOE 2012 “goal”.12   

We assume an EV fuel efficiency of 1 kWh for 4 miles of driving (e.g. 250 Wh/mile). 

The Nissan Leaf, for example, has a 24kWh battery size and a driving range of 100 miles.  This 

translates to 4 miles/kWh. The Tesla Roadster has 56kWh battery and a driving range of around 

220 miles, and this translates to 3.9mi/kWh. So, our assumptions seem reasonable.  

                                                                                                                                                                                   
maintenance, EVs are generally believed to have lower maintenance costs, although there is the disposal and 
replacement of the battery to consider.   
12 This assumes no below cost introductory prices (cross subsidization) by producers to establish markets. 



  24 

 The three solid lines in Figure 4 shows the incremental cost per vehicle for each 

configuration using the three battery cost estimates. As shown, these range from $75,000 for a 

driving range of 300 miles at current battery costs to $5,625 for a range of 75 miles if battery 

cost drop to $300/kWh. The two dashed lines are our estimated wtp/wta for each configuration 

for the standard and calibrated versions of our model.  The lines are for the person in our sample 

with the maximum wtp (see the Figures 2 and 3 for the full range of wtp/wta below this line). 

The plots show a wide disparity between current battery costs and wtp.  Current costs are in 

every instance above maximum wtp/wta. However, at the projected costs of $300/kWh, the gap 

closes considerably and in some instances falls below the wtp suggesting EVs may be economic 

at these lower costs. Certainly, if battery costs should drop even further as some suggest, the 

prognosis using our results would look even more favorable for EVs.    

Table 10 is a list of driving ranges and charging times for some EVs on, or nearly on, the 

market for comparison. The table includes configurations and prices posted in the popular press. 

We have also included our best guess as to where each vehicle would be classified on our set of 

configurations. This gives a good sense of where the market is today.  

Our analysis comes with a usual set of caveats and should be used with caution. There are 

a number of factors that could alter the position of either the cost or wtp/wta lines.  Here are a 

number to keep in mind when using our numbers. First, there is the roughness of our cost 

estimates that we have mentioned above. Second, our cost projections ignore technological 

developments for other aspects of EV production and the potential for large savings in through 

the mass production of EVs.  Third, we are assuming the cost of electricity stays at a level that 

keeps EV fuel costs at a $1.00/gallon equivalent. Forth, we are ignoring all issues related to the 

life and disposal of the battery. Fifth, gasoline prices may rise or fall in a way unanticipated by 
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our respondents.  Sixth, if EVs make inroads in the market, infrastructure for charging at work, 

shopping centers and so forth are likely to see dramatic improvement.  (Although we asked 

respondents to assume such infrastructure existed, it is not obvious that they did.) Seventh, there 

is the prospect of vehicle-to-grid EVs producing revenue for drivers, making EVs more attractive 

to buyers.  Eighth, the makers of GVs and other alternative fuel vehicles will not be dormant.  To 

the extent that respondents did not consider developments for these vehicles, our analysis will be 

in error.  For example, more fuel-efficient GVs may be offered as alternatives to EVs in the 

future and respondents may have not considered such developments.  

Finally, aas part of its current energy policy, the US government subsidizes the purchase 

of EVs by a tax credit of $7,500/vehcile.  A few states supplement this subsidy, for example, 

California adds $3,000.13  Our analysis suggests that $7,500 is sufficient to close the gap between 

wtp/wta and cost for the $300/kWh case in Figure 4.14 We are not taking a position here on 

whether or not such subsidy is good policy.   We are only saying that our analysis suggests that 

the subsidy is sufficient to stimulate market activity, given current and near future US costs of 

gasoline, electricity and automotive batteries. Without it, near-term purchase of EVs in the US 

would likely to be limited.  

Again, we consider this analysis entirely exploratory, intended to give the reader an idea 

of how our model may be used rather than drawing any specific conclusions.  We hope the 

results are used in the light. 

                                                        
13 A recent New York Times article (October 7, 2010) list subsidies that could range as high $13,000 per vehicle.  
14 Since cost exceed wtp in our analysis, it is important to note that this subsidy is essentially passed onto the 
manufacturers of EVs since it will produce little or no reduction in the price of EVs on the market.  
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VI. Conclusions 

 

Our analysis confirms and quantifies some of the variables from prior electric vehicle 

(EV) demand studies, while adding new quantitative variables and depth to understanding the 

wtp of multiple EV attributes.   Quantifying the prior observation of “range anxiety”, we find 

that individuals are willing to pay anywhere from $35 to $75 for a mile of added driving range.  

They are also willing to pay $425 to $3250 per hour of charging time (for a 50 mile charge).  

They especially dislike slow charging time and short range in the extreme cases – 10 hours 

required to charge and 75 miles of range.  This is true even for those most favorably disposed to 

EVs.  Fuel savings by going electric, not surprisingly, matters and matters more to those most 

likely to be in the EV market.  We find that the average individual capitalized about five years of 

fuel savings into the price of an EV.   Considering the individual EV attributes, we found the 

most important to be (in order):  range, charging time, performance, and pollution reduction.  

The value of fast charging and performance have not been well documented in the EV literature.  

We find, contrary to some prior assumptions, that EV purchase should not be thought of as 

primarily a “green” purchase—environmental concern has some effect, but other convenience 

and performance attributes are more important to wtp. 

Considering demographics, we found that a person’s likelihood of purchasing an EV 

increases if they are young, male, expect gas prices to rise, live a green life style, plan to buy a 

hybrid vehicle as their next car, have a place for an EV outlet at home, tend toward smaller gas 

cars, and have frequent long drives.   Frequent long drives was a surprise due to range limitations 

of current EVs, but may be explained by respondents’ motivation for fuel cost savings. Location 

(regions in the US) did not matter after we controlled for the attributes of the people.     
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We found that the people most interested EVs were willing to pay a substantial premium 

over equivalent GVs.   For those in the top 10th percentile, willingness to pay for an EV with 150 

miles driving range and 1 hour charging time per 50 miles driving range was about $9,645 to 

$4,953 more than an equivalent GV.  Using a simple model of increased vehicle cost, estimated 

to be equivalent to battery cost at DOE projected cost levels, we found that battery costs need to 

drop considerably if EVs are to be competitive without subsidy and with current US gasoline 

prices. DOE has a 2014 goal for battery cost to decline to $300/kWh.  DOE-stated current cost is 

$1000/kWh, although some manufacturers are already reaching $600-700/kWh. We also find 

that the current federal subsidy of $7500 is sufficient to close the gap between costs and wtp if 

battery costs decline to $300/kWh.  
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Table 1: Summary of Past EV Studies 

 

Study 

 

Econometric Model 

Number of 

choice sets, 

attributes, & 

levels 

 

List of attributes used 

Beggs et al. (1981) Ranked logit  16, 8, NA Price, fuel cost, range, top speed, 

number of seats, warranty 

 

Calfee (1985) Disaggregate MNL 30, 5, NA Price, operating cost, range, top 

speed, number of seats 

 

Bunch et al. (1993) MNL and Nested logit  5, 7, 4 Price, fuel cost, range, acceleration, 

fuel availability, emission reduction,  

dedicated vs multi-fuel capability 

 

Brownstone and Train 

(1999) 

MNL and Mixed logit 2, 13, 4 

Brownstone et al. (2000)  Joint SP/RP  Mixed logit   2, 13, 4 

Price, range, home refueling time, 

home refueling cost, service station 

refueling time, service station 

refueling cost, service station 

availability, acceleration, top speed, 

tailpipe emission, vehicle size, body 

type, luggage space 

 

Ewing and Sarigollu 

(2000) 

MNL  9, 7, 3 Price, fuel cost, repair and 

maintenance cost, commuting time, 

acceleration, range, charging time 

 

Dagsvik et al. (2002) Ranked logit  15, 4, NA Price, fuel cost, range, top speed 
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Table 2: Attributes and Levels Used in the Choice Experiment 

Attributes Levels  

 

Price relative to your preferred GV 

 

Same 

$1,000 higher  

$2,000 higher   

$3,000 higher  

$4,000 higher   

$8,000 higher  

$16,000 higher 

$24,000 higher 

 

Driving range on full battery 75 miles  
150 miles  
200 miles  
300 miles 
 

Time it takes to charge battery for  

50 miles of driving range 

 

10 minutes,  

1 hour 

5 hours  

10 hours 

 

Acceleration relative to your preferred GV 20% slower  

5% slower 

5% faster  

20% faster 

 

Pollution relative to your preferred GV  95% lower  

75% lower  

50% lower  

25% lower 

 

Fuel cost Like $0.50/gal gas 

Like $1.00/gal gas 

Like $1.50/gal gas  

Like $2.00/gal gas 
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Table 3: Distribution of Choices among Alternatives 

 
Alternatives 

Without yea-saying 
correction (%) 

N=1033 

With yea-saying 
correction (%) 

N=1996 
 
Electric vehicle-1 

 
23.5 

 
23.3 

 
Electric vehicle-2 27.1 25.0 

 
My Preferred Gasoline Vehicle 49.4 23.6 

 
My Preferred Gasoline Vehicle – although I like the idea of 
electric vehicles and some of the features here are ok, I 
could/would not buy these electric vehicles at these prices 

 
- 

 
28.1 

   
Total 100 100 
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Table 4: Descriptive Statistics (N=3029) for variables used in LC Model.  Either % or mean 
is shown, depending on whether the variable is dichotomous. 

Variable Description % in 

sample 

Mean 

(SD) 

 
Young  

 
1 if 18-35 years of age; 0 otherwise 

 
30 

 

    

Middle age 1 if 36-55 years of age; 0 otherwise 43  
    

Old  1 if 56 years of age or above; 0 otherwise 27  
    

Male 1 if male; 0 otherwise  43  
    

College 1 if completed a BA or higher degree; 0 otherwise 37  
    

Income Household income (2009$)  $60,357 
($42,398) 

 
Car price Expected amount spent on next vehicle  $23,365 

($9,607) 
 

Gas price  Expected price of regular gasoline in 5 years (nominal dollars)  $4.4 
($1.7) 

 
    

Multicar  1 if household owns 2 or more cars; 0 otherwise 62  
    

Hybrid  1 if household plans to buy a hybrid on next car purchase, 0 
otherwise 

 
33 

 

    

Outlet 1 if the respondent is very likely or somewhat likely to have a place 
to install an outlet (charger) at their home at the time of next vehicle 
purchase; 0 otherwise 

 
 

77 

 
 
 
 

    

New goods 1 if respondent has a tendency to buy new products that come on the 
market; 0 otherwise 

 
57 

 

    

Long drive 1 if respondent expects to drive more than 100miles/day at least one 
day a month; 0 otherwise 

 
70 

 
 
 

Table continued on Next Page. 
 



  32 

 
 
Table 4: Descriptive Statistics (N=3029): continued 
 

Variable Description % in 

sample 

Mean 

(SD) 

Small car  1 if respondent plans to buy small passenger car on next purchase; 0 otherwise  

17 

 

Medium car 1 if respondent plans to buy medium or large passenger car on next purchase; 
0 otherwise 

41  

 

Large car 1 if respondent plans to buy an SUV, Pickup-truck, or Van on next purchase; 0 
otherwise 

42  

    

Major green 1 if respondent reported making major change in life style and  
shopping habits in the past 5 years to help the environment; 0 otherwise  

 
23 

 
 
 

    

Minor green 1 if respondent reported making minor change in life style and  
shopping habits in the past 5 years to help the environment; 0 otherwise  

 
60 

 

    

Not green 1 if respondent reported no change  in life style and shopping habits in the past 
5 years to help the environment; 0 otherwise 
 

 
17 
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Table 5: Comparing Sample and Census Data 

Variable Sample (%) Census (%) 
 
Male 

 
43.0 

 
48.7 

   
Age distribution   
18 to 24 12.0 12.9 
25 to 44 39.4 36.3 
45 to 64 34.7 33.9 
65 to 84 13.8 14.4 
85 or above 0.17 2.5 
   
Educational achievement   
High school incomplete 2.0 15.7 
High school complete 39.2 30.0 
Some college  21.7 29.3 
BA or higher 36.7 25.0 
   
Household income distribution  
Less than 10,000 4 7.2 
$10k to $14,999 3.3 5.5 
$15k to $24,999 10.2 10.6 
$25k to $34,999 13 10.6 
$35k to $49,999 19.1 14.2 
$50k to $74,999 22.5 18.8 
$75k to $99,999 13.5 12.5 
$100k to $149,999 10.3 12.2 
$150k to $199,999 1.9 4.3 
$200k or more 1.5 4.2 
   
Type of residence   
House 72.8 69.2 
Apartment/condo 20.8 24.6 
Mobile or other housing type 6.4 6.2 
   
Number of vehicles in a household 
No vehicle 4.2 8.8 
1 vehicle 34 33.4 
2 vehicles 40.3 37.8 
3 or more vehicles 21.5 20.0 

 
Census Data Source: U.S. Census Bureau, 2008 American Community Survey 
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Table 6: Class Membership Model (GV-oriented is the excluded class)  

Variables  
Coefficient 

 

 
       t-stat. 

 
Odds  
ratio 

  
Class membership constant 

 
-2.9                                               

 

 
-11.5 

 
0.06 

Young 1 0.81 
 

6.1 2.2 

Middle age1  0.26 
 

2.3 1.3 

Male 0.10 
 

1.0 1.1 

College  0.24 
 

2.3 1.3 

Income (in 000)  -0.0018 
 

-1.4 0.99 

Gasoline price ( in $/gall)  0.08 
 

3.0 1.08 

Hybrid  0.84 
 

7.9 2.3 

Outlet  1.18 
 

10.3 3.3 

Multicar  -0.13 
 

-0.12 0.9 

Small car2 0.36 
 

2.6 1.4 

Medium car2  0.23 
 

2.3 1.3 

Long drive  0.20 
 

2.0 1.2 

Major green3  1.05 
 

6.9 2.9 

Minor green 3 0.63 4.9 1.9 
 
New goods 0.46 

 
4.9 

 
1.6 

    
Log likelihood value -4929   
    
Sample size 6058 

 
  

See Table 4 for variable definitions. 
1. Excluded category is Old (>56) 
2. Excluded category is Large car 
3. Excluded category is Not green  
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Table 7: Random Utility Model and WTP Estimates (t-stat. in parenthesis) 

  Parameters  WTP Values 
Latent Class Model  Latent Class Model1 Attributes   

MNL Model  GV
Oriented 
Class 

EVOriented 
Class 

GV
Oriented 
Class 

EV
Oriented 
Class 

Weighted 
Average 

EV constant  ‐2.5 
(‐12.3) 

‐7.46 
(‐4.9) 

0.54 
(4.3) 

‐$22,006  $2,357  ‐$7,060 

Yea saying tendency  ‐0.28 
(‐4.5) 

‐0.25 
(‐1.1) 

‐0.37 
(‐4.6) 

     

Price relative to  
preferred GV (000) 

‐0.09 
(‐12.2) 

‐0.339 
(‐3.0) 

‐0.102 
(‐18.0) 

     

Price relative to  
GV * car price (000,000) 

0.0007 
(2.7) 

0.0021 
(0.62) 

0.0012 
(5.6) 

     

Fuel cost ( $/gall)  ‐0.21 
(‐5.0) 

‐0.169 
(‐0.72) 

‐0.35 
(‐9.8) 

‐$4992  ‐$4,853  ‐$2,706 

Driving range on full battery (excluded category is 75 miles)     
          300 miles  1.00 

(13.6) 
2.6 
(3.7) 

1.28 
(19.2) 

$7,670  $17,748  $12,779 

          200 miles  0.77 
(11.3) 

1.94 
(2.7) 

0.92 
(15.9) 

$5,723  $12,757  $9,289 

          150 miles  0.49 
(6.8) 

1.32 
(1.8) 

0.53 
(9.0) 

$3,8942  $7,349  $5,646 

Charging time for 50 miles of driving range (excluded category is 10 hours)     
          10 minutes  0.67 

(10.7) 
2.2 
(4.2) 

0.80 
(14.9) 

$6,490  $11,093  $8,567 

          1 hour  0.48 
(7.6) 

2.0 
(4.0) 

0.55 
(10.1) 

$5,900  $7,626  $5,858 

          5 hours  0.19 
(2.8) 

1.6 
(2.9) 

0.07 
(1.3) 

$4,720  $9712  $2,136 

Pollution relative to preferred GV (excluded category is 25% lower)       
          95% lower  0.35 

(5.2) 
1.2 
(3.1) 

0.37 
(6.2) 

$3,540  $5,130  $4,346 

          75% lower  0.10 
(1.6) 

0.90 
(2.5) 

0.19 
(3.2) 

$2,655  $2,635  $2,645 

         50% lower  0.07 
(1.1) 

0.75 
(1.6) 

0.12 
(1.9) 

$2,2122  $1,6642  $1,935 

Acceleration relative to preferred GV (excluded category is 20% slower)     
          20% faster   0.55 

(8.0) 
2.2 
(2.5) 

0.59 
(9.6) 

$6,490  $8,181  $7,348 

          5% faster   0.36 
(5.2) 

1.97 
(2.4) 

0.33 
(5.3) 

$5,811  $4,576  $5,186 

          5% slower   0.15 
(2.4) 

1.1 
(1.4) 

0.15 
(2.8) 

$3,2452  $2,080  $2,655 

 
Log likelihood value 

 
‐5356 

 
‐4929 

     

Sample size  6032  6058 
 

     

1. Yea‐say correction turned on in all cases. 
2. Based on a statistically insignificant parameter at the 5% level of confidence. 
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Table 8: Attribute Levels Used for EV Configurations  
 

EV scenario Range (mi) Charging time 
for 50 mi  

Pollution 
(percent 
lower) 

Acceleration Fuel cost (“like 
$____ per 
gallon”) 

A 75 10 hours 25% 5% slower $1 
B 75 5 hours 50% 5% slower $1 
C 100 5 hours 50% same $1 
D 150 1 hour 50%  5% faster $1 
E 200 1 hour 50% 20% faster $1 
F 300 1hour 75% 20% faster $1 
 
 
 
 
 
 
 
Table 9: Standard and Calibrated wtp/wta Values for Different EV Configurations (2009 
Dollars)  
 
 
 

EV scenario  Min Q1 Median Q3 Max 
A Standard 

Calibrated 
 

-$18,875 
-$19,224 

-$12,478 
-$14,695 

-$9,221 
-$12,395 

-$6.173 
-$10,241 

-$1,469 
-$6,919 

B Standard 
Calibrated 
 

-$12,248 
-$12,597 

-$7,488 
-$9,709 

-$5,070 
-$8,243 

-$2,288 
-$6,874 

$687 
-$4,762 

C 
 

Standard 
Calibrated 
 

-$9,612 
-9,971 

-$4,855 
-$7,075 

-$2,433 
-$5,606 

-$166 
-$4,234 

$3,333 
-$2,117 

D Standard 
Calibrated 
 

-$4,282 
-$4,714 

$1,750 
-$523 

$4,819 
$1,604 

$7,692 
$3,598 

$12,126 
$6,671 

E Standard 
Calibrated 
 

-$1,625 
-$1,974 

$5,684 
$3,467 

$9,406 
$6,234 

$12,891 
$8,823 

$18,296 
$12,820 

F Standard 
Calibrated 
 

$1,813 
$526 

$9,995 
$6,556 

$14,164 
$9,625 

$18,069 
$12,497 

$24,093 
$16,930 
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Table 10: Driving Range and Charging Time for Some Current EVs 

 
Source: Josie Garthwaite, 2010, “Battle of the Batteries: Comparing Electric Car Range, Charge Times” on 
Gigacom, posted Jun. 8, 2010.   http://earth2tech.com/2010/06/08/battle-of-the-batteries-comparing-electric-car-
range-charge-times/ , corrected and augmented from our own testing and calculations, and from communications 
with EV industry. 

Vehicle Battery Range 
(mi) 

Charging time 
(Empty to Full 
Battery) 

Charging 
time for 
50 miles 

Expected 
date of 
release 

Closest 
Vehicle 
Configuratio
n for Table 9 

Estimate of 
Current  
Base  
Price  

BMW Mini 
E 

35 kWh 
lithium ion 

156 mi 
 

3 hrs at 240V/48 
amp. 

58 mins Limited trial 
since 2009 

 
D 

$850-$600/mo 
lease include 

insurance 
        
Coda Sedan 34 kWh 90-120 mi <6 hours at 240V. 2.5-3.5 hrs launch slated 

for late 2011 
 

C 
~$40,000 

        
Ford Focus 
EV 

23 kWh 
Lithium ion 

75 mi 6-8 hours at 230V 4-5 hrs  B 
 

$35,000 

        
AC 
Propulsion 
eBox 

35 kWh 120 mi 2 hours at 240V 80 
amp 

50 mins Custom order C/D N/A 

        
Mitsubishi 
iMiEV 

16 kWh 80 mi 7 hrs at 220V,  
2.5 hrs fast charge 

4.5 hrs, 
1.5 hrs  

On sale in 
Japan 

B $47,000 

        
Nissan 
LEAF 

24 kWh 100 mi 
(city 
driving) 

8 hrs at 220V. 80% 
charge in 30 mins 
with fast charge 

4 hrs launch slated 
for the end of 
this year 

C $33,000 

        
Smart 
Fortwo ED 

16.5 kWh 
lithium ion 

85 mi 3.5-8 hrs, depending 
on starting charge 
level and voltage 
used  

2 -5 hrs  
On sale in EU 

B $19,000 

        
Tesla Model 
S 

42 kWh 
standard  

  160 mi 
base model  

3-5 hrs at 220V/70 
amp, 80 percent 
charge in 45 mins at 
440V. 

1 – 1.5 hrs Deliveries 
scheduled to 
begin in 2012. 

D $57,000 

        
Tesla 
Roadster 

56 kWh 
lithium cobalt 

220 mi 
(combined 
city/HY) 

3.5 hours at high 
power 

<50 mins Out sale since 
2009 

E $109,000 

        
Think City 24.5 kWh 

lithium ion 
batteries 

112 mi for 
the U.S. 
market 

8 hrs at 110V.  3.5 hrs On sale in 
EU, being 
delivered to 
US fleets 

B $38,000 

        
Volvo 
Electric C30 

24 kWh 93.2 mi 8 hrs at 230V, 16 
amp 

4.5 hrs 50-vehicle test 
fleet slated for 
Sweden 

B N/A 
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Figure 1: Sample EV Choice Set 
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Figure 2: BoxWhisker Plots of Standard wtp/wta for six Vehicle 
Configuarations Shown in Table 8 
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Figure 3: BoxWhisker Plots of Calibrated wtp/wta for six Vehicle 
Configuarations Shown in Table 8 
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Figure 4:  Comparing maximum WTP values and battery costs 
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