

• The 2 I will <u>not</u> present today:

"The More Abstract the Better? Raising Education Cost for the Less Able when Education is a Signal."

"Does Signaling Solve the Lemons Problem?"

Lemons

Timothy Perri

Presented to the Department of Economics,

Appalachian State University,

September 6, 2013

Introduction.

Akerlof (2012, 2013, and with Tong, 2013) has argued individuals often do not behave according to

rational expectations (RATEX).

• Akerlof: a *phool* is one who is not stupid, but who makes a mistake.

• *Phishing* occurs as some try to influence others to make mistakes that benefit the phishers.

Implication: mistakes will

always benefit those who phish the phools.

• I call them loons.

• Akerlof uses an example of a complete lemons market (no trade).

• With phools, some trade occurs & buyers lose on average.

• 3 points to consider.

 In Akerlof's analysis of a lemons market, no phishing is required----buyers make mistakes. 2 . Mistakes should go in
either direction, either
underestimating or
overestimating how much
trade will occur.

③ Asymmetric information info. models often assume

 $\pi = 0 \Rightarrow$ no gain from phishing.

• QUESTIONS:

1) If loons exist, does their

behavior always make them

worse off?

2) Can loons increase total welfare?

3) Can the welfare of loonsincrease when total welfare

increases?

• I examine different adverse selection problems when we <u>either have RATEX or loons.</u>

Lemons mkt. set up.

- x = quality.
- $x \sim U$ on $[x_{min}, x_{max}]$
- Sellers know what they have
- & value a good by *x*.
- Any buyer who knew *x* would

pay *vx*, v > 1.

- Perfectly elastic demand.
- Thus, the gain from exchange for a unit of the good = (v - 1)x.
- All goods would trade with

perfect information.

• Asymmetric information. RATEX: buyers expect goods with $x \le x^*$ will trade----the best goods will not trade.

•
$$P = price$$
.

• Buyers will offer:

$$v \mathbf{E}(x | x_{min} \le x \le x^*) =$$

$$\frac{v}{2}(x_{min}+x^*).$$

• Sellers with $x \leq x^*$ will trade

if $P = x^*$.

 \therefore For goods with $x \le x^*$ to trade:

 $\frac{v}{2}(x_{min}+x^*)\geq x^*.$ (1)

• If $v \ge 2$, no lemons problem.

... Focus on the case when v < 2& at least <u>some</u> lemons prob.

occurs:

 $v \mathbf{E}(x) < x_{max},$

with E(x) the population mean.

Akerlof's example.

• $x_{min} = 0, x_{max} = 2, \& v = 1.5.$

• *Ineq*.(1) does <u>not</u> hold.

$$\frac{v}{2}(x_{min}+x^*) \ge x^*.$$
 (1)

 $.75x^* \ge x^*$. \otimes

• No trade would occur with RATEX.

- The gain from trade, $G_{,} = 0$.
- From now on, normalize total
- # of goods available to 1.

Loons.

- Akerlof: buyers believe all goods will trade, offer P = 1.5& will buy any cars at $P \le 1.5$. $\therefore P = 1.5 \& x^* = 1.5.$ Ave. x traded = \overline{x} = .75.
- # traded = .75.

- Consumers value a good with \bar{x} by $v\bar{x} = (1.5)(.75) = 1.125$.
- On average,
- consumers lose .375.

$$\therefore \ CS = -(.75)(.375) = -.28125.$$

• $PS = (\# \text{ traded})(P - \overline{x}) =$

.75(1.5 - .75) = .5625.

• G = CS + PS =

.5625 - .28125 = <u>.28125</u>.

- ∴ This fits Akerlof's view phools can be phished.
- If firms are phishers, they gain from phishing.
- What Akerlof did not mention

is $\Delta G > 0$.

Less than complete lemons mkt.

•
$$x_{min} = 1, x_{max} = 5, \& v = 1.5.$$

• Now *ineq*.(1) holds.

• Solving *ineq*.(1) for the

equality:

$$x^* = \frac{\nu x_{min}}{2 - \nu}.$$
 (2)

$$\therefore x^* = 3$$
 (RATEX)

• *P* = 3.

• Goods traded: $x \in [1, 3]$,

so $\overline{\mathbf{x}} = 2$.

• .5 goods are traded.

• Buyers value these goods on average by 1.5(2) = 3 = P.

 \therefore **CS** = 0

Some have CS > 0 (x > 2),

& some have CS < 0 (x < 2).

• $PS = .5(P - \bar{x}) = .5(1) = .5$

 $\therefore G = CS + PS = .5$

Loons1: Buyers overestimate *P*

• Suppose buyers offer to buy

any good with $P \leq 4$.

 $\therefore P = 4.$

Goods traded: $x \in [1, 4]$,

so $\bar{x} = 2.5$.

• .75 = # traded.

• Buyers on ave. value these

goods by 1.5(2.5) = 3.75.

- ... Buyers lose .25 on average.
- CS = -.75(.25) = -.1875

- $PS = .75(P \bar{x})$
- =.75(1.5) = 1.125.
- \therefore **G** = 1.125-.1875 = .9375.

- As in Akerlof's ex., buyers overestimating *P*
- $\Rightarrow CS\downarrow, PS\uparrow, \& G\uparrow.$
- However, mistakes should go in either direction if buyers are

phools/loons/irrational.

• In Akerlof's ex., there is no trade with RATEX---can only

overestimate *P*.

Loons2: Buyers underestimate *P*

• Suppose consumers offer to

buy any good with $P \leq 2$.

 $\therefore \mathbf{P} = 2.$

Goods traded: $x \in [1, 2]$.

 $\bar{x} = 1.5.$

.25 = # traded.

When buyers *underestimate P*, relative to RATEX
equilibrium, it is like
a binding price ceiling.

• If demand slopes down, with a binding price ceiling, $CS\downarrow$ because $Q\downarrow$, but $CS\uparrow$

because $P \downarrow$.

 $\therefore \Delta CS$ is ??
- With perfectly elastic demand, there is <u>no</u> *CS* to lose as Q^{\downarrow}
- $\therefore CS^{\uparrow} \text{ with loons.}$
- With loons,
- $CS = (\# \text{ traded})(v\bar{x} P)$
 - = .25[1.5(1.5) 2] = .0625.

• **PS** = (# traded)(**P** - \bar{x})

= .25(2-1.5) = .125.

∴ *G* = .1875.

• Relative to RATEX, CS^{\uparrow} (from 0 to .0625). PS^{\downarrow} (from .5 to .125). G^{\downarrow} (from .5 to .1875).

Job market signaling (welfare <u>cannot</u> be increased) • The problem as usually modeled is different from the standard lemons model. • The welfare loss is not due to

<u>no</u> trade.

• It <u>is</u> due to expenditure by

high quality sellers to

differentiate themselves.

• This may simply redistribute

wealth.

• Stars productivity = θ_s ,

• Lemons productivity = θ_L ,

with $\theta_{S} > \theta_{L} \ge 0$.

• The fraction of stars in the population is *s*.

• The cost of the signal, y is:

 $C_{star} = y \& C_{lemon} = \beta y, \beta > 1.$

• Buyers (firms) compete for

workers & break even no matter

what: CS = 0.

• The lowest level of the signal

to induce lemons <u>not</u> to mimic

stars is y_{Riley}:

$$y_{Riley} \approx \frac{\theta_S - \theta_L}{\beta}.$$

• Payoff to a star from signaling is:

$$\theta_S - y_{Riley} = \frac{(\beta - 1)\theta_S + \theta_L}{\beta}.$$

• Total expenditure on the

signal (# of individuals = 1) =

 $s(y_{Riley}).$

• Pooling. If all set y = 0, wage

 $= W_{pool}$:

 $W_{pool} = s \theta_S + (1-s) \theta_L.$

... Stars prefer signaling to

pooling if:

$$s \leq \frac{\beta - 1}{\beta} \equiv s^*.$$

• Lemons always prefer pooling (they are paid more with

pooling).

If *s* < *s**, signaling occurs & *G*↓ (by *s*×*y*_{*Riley*}) with RATEX.
If *s* > *s**, pooling occurs & *G* is as large as possible.

Loons. Lemons are passive---they set y = 0 regardless of the equilibrium.

• Stars are the ones who can make mistakes (& affect

equilibrium).

• Suppose stars believe their fraction in the population is *\$*.

• If $s > s^* \& \hat{s} < s^*$:

stars would be better off

pooling, but they signal; lemons

lose (wage \downarrow).

$\therefore G \downarrow --- \text{ it must because}$ wasteful expenditure occurs. • If $s < s^* \& \hat{s} > s^*$: stars would

be better off signaling, but they

pool; lemons gain (wage \uparrow).

∴ G[↑]---it must because wasteful expenditure is avoided. Here behavior by some loony sellers (stars) makes sellers on average better off while G[↑].

Job market signaling (welfare <u>can</u> be increased)

• Suppose there is a welfare gain from allocating individuals to different jobs.

One example.

• Social return to screening:

gain when lemons are allocated to where their productivity is highest.

- Absent signaling, all are in the sector where lemons are less valuable.
- Social cost is the expenditure by stars on signaling = $s(y_{Riley})$.

As $s\uparrow$, social benefit 4 & social cost \uparrow --- fewer lemons to allocate to where they are more productive, & more stars to signal.

 \therefore For $s < s_1$, signaling

increases G.

For $s > s_1$, signaling

decreases G.

• Also, stars will pool if $s > s_2$

(with $s_2 > s_1$).

Figure One. Welfare with signaling and pooling when signaling may increase welfare.

- Let $s = s_2 + \varepsilon$, where ε is a
- small positive #.
- A slight <u>understatement</u> of *s*
- by stars $\Rightarrow \hat{s} < s_2$.
- Stars will signal instead of

pooling, & $G \downarrow$.

- Lemons lose because they are paid less with signaling than with pooling.
- Stars lose because they prefer

pooling when $s > s_2$.

• Now let $s = s_2 - \varepsilon$, with ε

again positive.

• A slight <u>overstatement</u> of *s* by

stars $\Rightarrow \hat{s} > s_2$.

Pooling occurs & G^{\uparrow} .

- Lemons gain because they are paid more.
- Stars lose because they prefer signaling when $s < s_2$.

Here behavior by loony stars that changes the outcome necessarily makes the loons worse off.

• Finally, when $s < s_1$, signaling occurs with RATEX, & yields the highest possible G. • In this case, it would take a significant overstatement of *s*---

 $\hat{s} > s_2$ ---to change the outcome.

Simultaneous screening & pooling

- Lazear (1986)
 - & Spence (2002).
- Firms screen for
- productivity/quality = *z*.
- $z \sim U$ on $[0, z_{max}]$ with one of each type.

- This differs from signaling (above).
- 1) A continuum of *z*.
- 2) Screening is an accurate test
- (with signaling, quality is
- revealed implicitly).

3) Simultaneous screening &

pooling.

• Let m = screening cost per

individual.

• Some jobs do not screen.

• Salary firms pay a wage,

 $w_s = E(z|salary firms).$

Piece rate firms screen individuals (which reveals *z* to all firms), & pay *z* – *m*. Screening is a social waste.

 $\overline{\mathbf{R}}$

• With RATEX, in equilibrium, the marginal individual has

 $z = z^*$.

• Those with the highest *z* will be the ones who find it

beneficial to screen.

Salary firms pay $z^*/2$.

In equilibrium:

$$z^* - m = \frac{z^*}{2}$$
, so $z^* = 2m$.

• $w_s = E(z|salary firms) = m$.

• *G* is reduced by the amount spent on screening,

 $= m(z_{max} - z^*) = m(z_{max} - 2m).$

Loons

- Assume the mkt. works this way.
 - 1st, some apply to piece rate

firms & screen.

2nd, others apply to salary

firms.

3rd, competition by firms for workers is rational.

... piece rate & salary firms

breakeven: CS = 0.
• Workers can only be screened initially.

• Otherwise, those who

mistakenly go to salary

firms only because they

overstate w_s would quit

& apply to piece rate firms.

The RATEX equilibrium would result.

• Measurement cost is paid by individuals.

• *z* is revealed to all by

measurement.

Otherwise, salary firms would not know workers did not
behave rationally, & would pay

75

• The analysis would change only in that some of the gain or loss from loony behavior would be on the part of firms. Loons1: Individuals underestimate *w_s*

- η more go to piece rate firms.
- $0 \le z \le 2m$ η are in salary

firms.

$$\therefore w_s = m - \frac{\eta}{2}$$

Those who go to piece rate firms with RATEX <u>or</u> with loons are unaffected--- they get *z* – *m* in either case.

2) $2m - \eta$ individuals in salary firms lose $\frac{\eta}{2}$ each: their *PS* falls

by $(2m - \eta)\frac{\eta}{2}$.

3) η individuals now in piece rate firms have E(z) =

$$\frac{1}{2}(2m-\eta+2m)$$

$$=2 m - \frac{\eta}{2}$$

With screening cost of *m*,

their average payoff is $m - \frac{\eta}{2}$.

They would have earned *m* on average with RATEX at salary

firms: their **PS** falls by $\frac{\eta^2}{2}$.

$$\therefore \Delta PS = -(2m - \eta)\frac{\eta}{2} - \frac{\eta^2}{2}$$

= $-m\eta$ --- due to increased

screening cost.

∴ all in salary firms lose
 relative to RATEX when
 individuals understate the wage
 in salary firms.

Loons 2: Individuals overestimate *w*

η more now apply to salary
 firms where

 $0\leq z\leq 2m+\eta.$

 \therefore E(z|salary firms) = $m + \frac{\eta}{2}$.

• The 2*m* who are in salary firms with RATEX or loons gain $\frac{\eta}{2}$ each for

 $\Delta PS = m\eta.$

• Those who would be in piece rate firms with either RATEX or loons still get z - m.

∴ The *η* who now go to salary
firms (& would have gone to
piece rate firms with RATEX),
must break even on average
(proof below).

• Why? Because $\Delta G = m\eta$ ----

reduced screening cost.

• The externality present in

these models benefits the 2m

individuals.

• When individuals *overstate* w, the η additional individuals who now go to salary firms would have earned $m + \frac{\prime\prime}{2}$ on average (net of screening cost) in piece rate firms.

• However, now $w_s = m + \frac{\eta}{2}$. These individuals raise w_s enough to offset what they would have netted in piece rate firms. What is not individually rational for them, does not hurt them on average.

• The externality is they do not take account of the reduction in *w_s* if they (rationally) go to piece rate firms.

Moral: with asymmetric

information, loons may make

themselves better off, & may

make society better off.

Sometimes loons & society are both better off, but sometimes they are both worse off. Other times, there are opposite effects on welfare for loons & society. 3/3