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Angler Heterogeneity and the Species-Specific Demand for

Marine Recreational Fishing

Abstract

In this study we assess the ability of the Marine Recreational Fishery Statistics Survey
(MRFSS) to support single-species recreation demand models. We use the 2000 MRFSS
southeast intercept data combined with the economic add-on. We determine that the
MRFSS data will support only a few species-specific recreation demand models.
Considering species of management interest in the southeast, we focus on dolphin, king
mackerel, red snapper and red drum. We examine single-species recreational fishing
behavior using random utility models of demand. We explore mixed logit (i.e., random
parameter) logit and finite mixture (i.e., latent class logit) models for dealing with angler
heterogeneity. We compare these to the commonly used conditional and nested logit
models in terms of the value of catching (and keeping) one additional fish. Mixed logit
models illustrate that the value of catch can be highly heterogeneous and, in some cases,
can include both positive and negative values. The finite mixture model generates value
estimates that were some times strikingly different than conditional, nested and mixed
logit models. Preference heterogeneity is significant within the MRFSS data. We find
evidence that single-species models outperform multiple species models and recreational

values differ.



Introduction

Efficient and effective management is needed to accomplish an economically and
biologically sustainable level of harvest in marine fisheries. Many marine fish species are
overfished and are desired by both commercial fishermen and recreational anglers. As a
result, fisheries managers must consider changes in allocations of the total allowable
catch between the commercial and recreational sectors. The efficient allocation is that
which equalizes the marginal value of the last fish caught (harvested) across sectors. This
paper addresses two issues when measuring the marginal value of recreation catch: angler
heterogeneity and species-specific values. We focus our attention on U.S. federally
managed species and the Marine Recreational Fishery Statistics Survey (Hicks et al.,

1999).

Much of the past marine recreational fishing demand research in the journal (e.g.,
Schuhmann 1998, Whitehead and Haab 1999, Whitehead 2006, Gentner 2007) and gray
literature (e.g., McConnell and Strand 1994; Hicks et al. 1999; Haab, Whitehead, and
McConnell 2001) ignores differences among anglers. Each of these studies assumes that
homogeneous anglers make decisions about trip benefits, costs and constraints in the
same way. It is likely that there exists heterogeneity among anglers with regard to how
they might react to trip benefits, costs and constraints. Angler preferences are likely to
vary substantially and this has potential implications for how they might value changes in
fisheries regulations. For example, Kim, Shaw and Woodward (2007) incorporate income
differences in their site choice model. Consequently, econometric models that allow for
heterogeneity may yield better predictions of fishing behavior and changes in economic

value.



Recent advancements in econometrics have allowed researchers to investigate
heterogeneous preferences with random parameter models and finite mixture models.
Each of these methods possesses its own advantages and have been applied in a number
of different settings. The mixed logit model provides modeling flexibility (Train 1998).
The mixed logit model can approximate any random utility based behavioral model, and
allows for more flexible patterns of substitution between alternatives than the standard
logit based models. In addition, the mixed logit model allows for random preference
variation across individuals in the sample. In the context of recreational fishing, the
mixed logit allows the researcher to estimate different economic values of changes in

fishing quality for each angler type based on characteristics of the angler.

The mixed logit model estimates a distribution of parameter estimates, and
therefore a distribution of economic value measures and preferences. In contrast, finite
mixture models can be used to estimate separate parameter estimates for individuals who
possess similar preferences, declared a different “type” within the population (Boxall and
Adamowicz 2002). Motivation for different types of anglers in a recreational fishery can
easily be made by noting that there exist a number of different objectives (catch-and-
release, partial retention, subsistence targeting). Each of these objectives can easily
combine to represent a different type of angler. Therefore, a model that can be used to
determine the number of types within the recreational fishery, the anglers who are
contained in each type and the preferences for a representative angler within each type

may be extremely advantageous.



For marine recreational fishing, management actions are typically directed at a
specific species. Many studies of saltwater fishing have employed species aggregations
(e.g., Bockstael, McConnell, and Strand 1999, Green, Moss, Spreen 1997, Schuhmann
1998, Whitehead and Haab 1999 in the journals and McConnell and Strand 1994, Hicks
et al. 1999, Haab, Whitehead, and McConnell 2001 in the gray literature). These
approaches assume that an aggregate species model can roughly approximate changes in
welfare resulting from species-specific changes. If the goal of the analysis is to measure
changes in value due to changes in the conditions of a single species, it may be important

to develop a species-specific model.

The choice of target species and how to incorporate substitute species in a marine
setting, where many species may be sought, is an important modeling decision. To
accurately assess angler values for marine recreational fishing, modeling of target species
and the existence of substitutes is critically important. If anglers are assumed to target a
species complex, when in fact they are targeting only one species, then estimates of
angler preferences and economic values for fishing quality may be biased due to
aggregation over species. The degree of aggregation bias increases as species become

less substitutable.

We develop species-specific demand models for: (1) dolphin and big game in the
south Atlantic (Florida), (2) mackerel and small game in the south Atlantic and Gulf of
Mexico, (3) red drum and seatrout in the south Atlantic and Gulf of Mexico and (2)
snapper-grouper in the Gulf of Mexico. For each species we develop a series of models

where anglers are assumed to choose a mode of fishing (private boat, shore, or



party/charter), a single target species and species groups and a recreation site. We explore
methods for dealing with differences in angler heterogeneity in recreation demand
modeling. We compare these techniques to the commonly used conditional and nested
logit models. The rest of this paper is organized as follows. In the next two sections we
describe the random utility model and data. Then we present results from conditional
logit, nested logit, mixed logit and finite mixture models. In the final section we discuss

the results, offer some conclusions and make some suggestions for future research.

Random Utility Models

Anglers will tend to choose fishing modes, target species and sites that provide
the most utility. Consider an angler who chooses from a set of j recreation sites. The

individual utility from the trip is decreasing in trip cost and increasing in trip quality:

(1) uj:Vi(y_ci’qi)+gi

where u is the individual indirect utility function, v is the nonstochastic portion of utility,
y is the per-trip recreation budget, c is the trip cost, g is a vector of site qualities, ¢ is the
error term, and i is a member of s recreation sites, s =1, ... , i, ... J. The random utility

model assumes that the individual chooses the site that gives the highest utility

(2) 7w, =Pr(v,+¢& >v, +¢&, Vs#i)

where 7 is the probability that site 7 is chosen. If the error terms are independent and
identically distributed extreme value variates then the conditional logit site selection

model results
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The conditional logit model restricts the choices according to the assumption of the
independence of irrelevant alternatives (I11A). Intuitively, imposing 1A on the choice
patterns means that the researcher thinks that the relative probability of an angler
choosing site A over site B is independent of the attributes of all other sites. While not
entirely unrealistic in the case of unrelated sites, many times some sites can be thought of
as closely related groups. This is often one motivation for the use of the nested logit
model wherein sets of similar sites are grouped into nests. Within each nest, 1A still
holds, but across nests, the strict substitution patterns implied by I1A are relaxed, thereby

reducing one potential source of researcher induced bias.

Consider a two-level nested model. The site choice involves a choice among M
groups of species-mode nests, m =1, ... , M. Within each nest is a set of J,, sites, j=1, ...
, Jm- When the nest chosen, #, is an element in M and the site choice, 7, is an element in J,
and the error term is distributed as generalized extreme value the site selection
probability in a two-level nested logit model is

V- -1
evm'/e [Zjij_ e "1/9}9

J

(4) i = M 7 V.10
n1:llzjzle mJ/ r

where the numerator of the probability is the product of the utility resulting from the
choice of nest # and site 7 and the summation of the utilities over sites within the chosen

nest n. The denominator of the probability is the product of the summation over the



utilities of all sites within each nest summed over all nests. The dissimilarity parameter, 0
< 6 <1, measures the degree of similarity of the sites within the nest. As the dissimilarity
parameter approaches zero the alternatives within each nest become less similar to each

other when compared to sites in other nests. If the dissimilarity parameter is equal to one,

the nested logit model collapses to the conditional logit model where M x J,, = J.

While encouraging, the nested logit model still requires the researcher to specify
the nesting structure of the choices. It is the researcher’s responsibility to specify
mutually exclusive groups of sites for each nest. At times this is intuitive. For example,
distinct geographic division may make the nests obvious. But at other times, the nesting
structure of the sites is not as straightforward. Mis-specified nests can lead to biased

parameter estimates and biased welfare measures.

Further, both the conditional and nested logit models assume that angler
preferences are homogeneous. That is, the marginal utility of a one unit change in any of
the site attributes is the same for all individuals sampled. The additional utility gained
from a decrease in travel cost to a site is the same regardless of the other characteristics
of the angler. A wealthy angler and a poor angler both benefit equally from a one fish
increase in the targeted catch rate. A well-specified model will allow for preference

heterogeneity across anglers and for flexible substitution patterns between sites.

The mixed logit allows for more flexibility in the substitution pattern between
alternatives and allows for preference heterogeneity across individuals. In this paper we

apply some of the simpler forms of the mixed logit to the four species (group) choice



models. Typically, the deterministic indirect utility component for individual j and site i

is assumed to be linear in a vector of individual and alternative specific variables:
) v, =x,

Where the vector x,, may contain variables that vary by alternative only (e.g. catch rates)

or vary by alternative and individual (e.g. travel cost), but does not contain variables that
vary only by individual. Algebraically, individual specific variables drop out of equation
(3) unless they are interacted with alternative specific dummy variables—a level of

complication we have chosen to avoid for the purposes of this paper.

For the conditional (and nested) logit models, the parameter vector S is assumed

to be constant across individuals. Imposing preference homogeneity may result in a
misspecified utility function and inaccurate estimates of the value of changes in the
independent variables. To allow for preference heterogeneity, we will assume that

individual angler preferences randomly vary according to a prespecified population

distribution such that:

©6) B =p+m,

where £ is an unknown, but constant locational parameter for preferences, and 7 is an
individual and alternative specific random error component for preferences that is
independently and (not necessarily identically) distributed across alternatives and

identically (but not necessarily independently) distributed across individuals.



Substituting (6) and (5) into (3) gives a new conditional expression for the choice

probability for a specific individual

e B+ny,

(7) ﬂ-ih |77ik = ~
J o By,
s=1 e

The choice probability in (7) is conditional on a specific value or realization of the

preference error term, 7, . However, to the researcher the most we can know, or assume,
is the form of the distribution for 7, up to an unknown parameter vector y. Assuming
that the density function is f(n|;/), the probability in (7) must be integrated over all

possible values of 7, to eliminate the conditioning:

b*"hh
® 7= [l k)= [———lnl)
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Ideally, the integration problem in (8) would be such that the probability has a closed
form expression as a function of the unknown parameters 5 and y. Unfortunately this is
not the case. Closed form expressions for equation (8) do not exist for common
distributions (normal, uniform, log normal) and estimation of the parameters in (8)

requires simulation of the integral.

The most common way to simulate the probability is to repeatedly draw from the

multivariate distribution of 7, , calculating the integrand in (8) at each draw and then
averaging over the draws to find an estimate of z,, conditional on g and y (Train 2003).

Using maximum likelihood algorithms to search over the possible space of fand y (and

10



simulating the probability vector for each possible value of  and y) will yield simulated
maximum likelihood estimates of the utility function and the preference heterogeneity

parameters.

The finite mixture model allows the data to reveal the presence of angler
heterogeneity. In much the same way that it is difficult to justify the assumption of
parameter homogeneity, in these models heterogeneity is driven by the data and assumed
to be related to socioeconomic factors that sort anglers into tiers. However, this sorting is
really a construct for motivating the model, since an angler with a set of socioeconomic
characteristics will receive different probability weights for each tier than anglers with
different characteristics. Consequently, rather than assume completely random
heterogeneity as in the mixed logit model, this model provides more structure to the form

of heterogeneity.

In the finite mixture site choice model, a vector of individual specific
characteristics (Z;) is hypothesized to sort angler types into T tiers each having potentially
different site choice preference as denoted by the preference parameters (B') over site

specific characteristics (Xx) where there are i € I anglers, k € K sites, and ¢ € T tiers.

From the researchers’ perspective, neither tier membership nor site-specific
indirect utility functions are fully observable. Assuming that angler i is in tier ¢, the

indirect utility of choosing site j is

© VU pBlie)=Xp +é,
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Following standard practices in random utility models (assuming that g, is
distributed as i.i.d. GEV 1), the probability of observing individual i choosing site j given

membership in tier ¢ can be written as

eXi/ﬂ/

Xy
De

keK

(10)  P(j|X,.Bie )=

Tier membership is also unknown to the researcher. Consequently, we specify the
probability of tier membership given a vector of socio-demographic information (Z;). We
construct this probability using common logit probabilities as in the site choice models

above:

A

(11) PG es|Z,0)=

e’
Zis!

e

teT

Notice that in this specification, the socio-demographic variables (Z;) do not vary over

tiers, but rather the tier parameters (3 ) varies by tier.

Equations (10) and (11) can be constructed for every individual i, tier ¢ to

calculate the overall probability of an observed choice as

(12) P()=2Plict|Z,8)xP(|X,.pB.i<t)

teT

In effect, using the tier probabilities in (11) the estimator mixes the tier-specific site

choice models to estimate an overall probability of visiting site ;.

12



Welfare Measurement

Welfare analysis is conducted with the site selection models by specifying a

functional form for the site utilities. It is typical to specify the utility function as linear:

vni(y_cni'qm‘) = a(y_cm') +ﬂ|qm’
(13) = C(y - acni + ﬁlqni
= _acni + IB'qni

where « is the marginal utility of income. Since ay is a constant it will not affect the

probabilities of site choice and can be dropped from the utility function.

The inclusive value, 7V, is measured as the natural log of the summation of the

nest-site choice utilities:

V(c.qia, ) = ln( v e Q]HJ

(14) .
(sl )

Hanemann (1999) shows that the choice occasion welfare change from a change in

quality characteristics is:

V(c,q;a, B)—1V(c,q + Ag;a, B)
o

(15) WIP=

where willingness-to-pay, WTP, is the compensating variation measure of welfare. Haab
and McConnell (2003) show that the willingness-to-pay for a quality change (e.g.,

changes in catch rates) can be measured as

13



(16)  WTP(Ag|ni) =™
o

The welfare measures apply for each choice occasion (i.e., trips taken by the individuals
in the sample). If the number of trips taken is unaffected by the changes in trip quality,
then the total willingness-to-pay is equal to the product of the per trip willingness-to-pay

and the average number of recreation trips, x .

Welfare measures in a finite mixture model follow closely the formulation found
in standard conditional logit models. First, consider one of the T tiers estimated in the
model. Since the choice probability in each tier follows from the standard conditional
logit, we can write the willingness-to-pay for a policy change conditional on membership

in tier t as

Zexfkﬁf j _ |n£2e;{fkﬁt j

In(
(17) WIP(X,X,B' |iet)=—1t=K 7 kek
tc

where Xand X are the pre and post site specific amenities vectors. The signing

convention above corresponds to an improvement in site characteristics when moving

fromX to X.

To extend the welfare measure across tiers, the tier probabilities must be

incorporated in order to find the unconditional CV for each individual as follows

14



ezﬁl |n(ZeX;kﬂ/ j _ In(ze/‘;ilkﬂ’ J

keK keK
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which is found by weighting each tier-specific tier CV with the corresponding probability

of being in that tier.

The 95% confidence intervals for willingness-to-pay are calculated using the
asymptotic procedure adapted from Krinsky and Robb (see Haab and McConnell 2002
for a detailed explanation). The confidence intervals are calculated by taking 1000
independent draws from a multivariate normal distribution with mean equal to the
estimated parameter vector for each model and variance covariance matrix equal to the
corresponding estimated variance covariance matrix. At each draw, willingness-to-pay is
calculated to give 1000 draws from the empirical distribution of willingness-to-pay.
Sorting the resulting empirical draws in ascending order and choosing the 2.5™ and 97.5"

percentile observations yields a consistent estimate of the desired confidence interval.
Data Description

The 2000 Marine Recreational Statistics Survey (MRFSS) southeast intercept data
is combined with the economic add-on data to characterize anglers and their spatial
fishing choices. Measures of fishing quality for individual species and aggregate species
groups are calculated using the MRFSS creel data. We focus on shore, charter boat and
private/rental boat hook-and-line day trip anglers. In the 2000 MRFSS intercept there are

70,781 anglers interviewed from Louisiana to North Carolina. The 2000 intercept add-on

15



data included 42,051 of the intercepted anglers. Twenty-eight percent of these anglers
have missing data on their primary target species. We exclude one percent who do not
use hook and line gear. We also exclude 33 percent of the anglers that self-reported a
multiple day trip and that live greater than 200 miles from the nearest site. Estimation of
consumer surplus values for overnight trips tends to produce upwardly biased estimates
of consumer surplus (McConnell and Strand, 1999). After deleting cases with missing
values on other key variables we are left with 18,709 anglers in our sample. Of these

anglers, 11,257 target a species.

The theory behind random utility models is that anglers make fishing choices
based on the utility (i.e., happiness) that each alternative provides. Anglers will tend to
choose fishing modes, target species and sites that provide the most utility for the least
cost. The angler target, mode and site selection decision depends on the costs and benefits
of the fishing trip. Fishing costs include travel costs. Travel costs are equal to the product
of round trip travel distance and an estimate of the cost per mile. In addition, a measure
of lost income is included for anglers who lost wages during the trip. Benefits of the

fishing trip include catch rates.

Travel costs are computed using distances calculated with PCMiler by the NMFS.
Travel costs are split into two separate variables depending on the ability of the angler to
trade-off labor and leisure. Ideally, travel costs would represent the full opportunity costs
of taking an angling trip in the form of foregone expenses and foregone wages associated
with taking an angling trip. Because not all anglers can trade-off labor and leisure at the

margin, we allow for flexibility in modeling these tradeoffs. For anglers that can directly

16



trade-off labor and leisure at the wage rate (those that indicate they lost income by taking
the trip), travel costs are defined as the sum of the explicit travel cost (i.e., round trip
distance valued at $0.30 per mile) and the travel time valued at the wage rate. Travel time
is calculated by dividing the travel distance by an assumed 40 miles per hour for travel.
For anglers that do not forego wages to take a trip, travel cost is simply defined as the
explicit travel cost. All charter boat anglers are assigned the average charter boat fee for

the east coast of Florida ($107.06) obtained from Gentner, Price and Steinbeck (2001).

We measure catch rate with the historic targeted harvest (hereafter, catch is
synonymous with harvest). Five year (1995-1999) targeted historic catch rates per day are
calculated using MRFSS data in each county of intercept to measure site quality. We also
include the log of the number of MRFSS intercept sites in each county to control for site
aggregation bias (Parsons and Needleman 1993). We focus our empirical efforts on
recreational species with management interest in the southeastern U.S. Twenty-percent of
anglers that report targeting a specific species target red drum. Six percent target dolphin,
six percent target king mackerel, four percent target Spanish mackerel, and two percent

target red snapper.

In the dolphin and big game model we focus on dolphin and big game boat trips
taken on the Atlantic coast of Florida. We also include the Gulf of Mexico trips taken
from Monroe County (i.e., Florida Keys). Eighty-three percent of 823 anglers target
dolphin relative to other big game.? Dolphin anglers have 20 years of fishing experience

and fish an average of 7 days each two month survey wave. Sixty-five percent are boat

% The big game species included are: atlantic tarpon, billfish family, blackfin tuna, cobia,
little tunny, sailfish, swordfish, tuna genus, wahoo, and yellowfin tuna.
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owners. Thirteen percent of the trips are charter trips. Big game target anglers have 22
years of experience and fish 11 days each wave. Sixty-nine percent are boat owners and
17 percent are charter boat trips. Dolphin and big game anglers fish an average of 5 hours

each day.

There are 12 county level fishing sites in the dolphin and big game model. Each
of these counties is comprised of a varying number of MRFSS intercept sites. Anglers
choose among two modes and two target species. Eleven percent (n = 87) of all anglers
target dolphin and choose among 8 county alternative sites in the party/charter mode.
Seventy-three percent (n = 598) of dolphin target anglers choose among 10 county
alternative sites in the private/rental mode. Fourteen percent (n = 136) of all anglers
target big game and choose among 16 county/mode alternative sites in the combined

party/charter and private/rental boat mode.

With 823 anglers and 34 alternatives there are 27,982 cases. We present the
means of the independent variables summed over the number of site choices within each
target and mode category. Travel costs for dolphin target trips party/charter trips are
about twice that of private/rental trips since they include the charter fee. After the 2000
MRFSS add-on data was collected a 20” size limit regulation for dolphin was imposed by
the South Atlantic Fishery Management Council. We investigate the effect of size limits

by sorting the historic catch rate into fish greater than or equal to 20” and less than 20”. A

18



household production model is used to predict the number of big (>20”) and small (<20)

dolphin.®

Predicted big dolphin catch per day is 0.19 for party/charter mode trips and 0.18
for private/rental mode trips. Predicted small dolphin catch per day is 1.15 and 0.28 for
party/charter and private/rental mode trips. The historic catch rate of big game fish per
day is 0.13 for party/charter and private/rental mode trips. The average number of

MREFSS interview sites ranges from 33 to 39 for dolphin and is 76 for big game.

In the mackerel and small game model we focus on king mackerel, Spanish
mackerel and small game private boat trips taken in the south Atlantic and Gulf of
Mexico. Thirty-two percent of the sub-sample of 1526 are king mackerel target anglers
who have 22 years of fishing experience and fish an average of 9 days each wave. Eighty
percent are boat owners. Forty percent of boat trips are in the Gulf of Mexico. Seventeen
percent of the anglers target Spanish mackerel and have 25 years of fishing experience
and fish an average of 8 days each wave. Seventy-nine percent are boat owners. Forty-

nine percent of the private boat trips are in the Gulf of Mexico. Fifty-one percent target

® A negative binomial model is used to estimate expected catch rates at each site for the
relevant species for each angler by mode (McConnell, Strand and Blake-Hedges, 1995).
The dependent variable in each model is the number of fish caught and kept per trip.
Independent variables are the mean historic catch and keep rate at each site, years fished,
boat ownership, charter mode, days fished during the past two months, hours fished and
survey wave. A necessary condition for using predicted catch as an independent variable
in the recreation demand models is that catch varies with mean historic catch rate across
site. Otherwise, predicted catch does not vary across site and is not helpful in explaining
site selection. Therefore, only 6 of 11 catch models are candidates for using predicted
catch in travel cost models. Only predicted catch in the dolphin and big game models
helps explain site selection behavior in expected ways. Other predicted catch coefficients
are either statistically insignificant or wrong signed.
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small game species.* Small game target anglers have 24 years of experience and fish 11
days each wave. Eighty-one percent are boat owners and 64 percent fish in the Gulf of

Mexico. Hours fished ranges from 4 to 5 per day.

There are 51 county level fishing sites from North Carolina to Louisiana in the
mackerel model. Anglers choose across three target species. A number of county/species
alternatives have empty cells which leaves 104 alternatives. Twelve percent of small
game angler trips take place in Alabama, 64% take place in Florida, 2% in Georgia, 1%
in Louisiana, 4% in Mississippi, 14% in North Carolina and 4% in South Carolina. For
king mackerel 17% of all targeted trips take place in Alabama, 61% take place in Florida,
6% in Georgia, 1% in Louisiana, less than 1% in Mississippi, 7% in North Carolina and
7% in South Carolina. Fifteen percent of all targeted Spanish mackerel trips take place in
Alabama, 44% take place in Florida, 2% in Georgia, 1% in Mississippi, 32% in North

Carolina and 5% in South Carolina.

Since many king mackerel target anglers have Spanish mackerel as a secondary
target, and vice versa, we include the historic catch rate for both species as independent
variables for both types of trips. Summed over alternatives, the average travel cost for
Gulf of Mexico and South Atlantic private/rental boat trips ranges from $240 to $278
across the four types of choices. Small game targeted catch per day is 1.41 fish in the
Gulf and 0.27 fish in the South Atlantic. King mackerel targeted catch per day is 0.08 fish

in the Gulf and 0.09 fish in the south Atlantic. Spanish mackerel targeted catch per day is

* The small game species are: common snook, sand seatrout, seatrout genus, florida
pompano, striped bass, bonefish, mackerel genus, bluefish, silver seatrout, permit, greater
amberjack, great barracuda, drum family, ladyfish, weakfish, irish pompano, jack family,
lookdown, tarpon family and fat snook.
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0.32 fish in the Gulf and 0.28 fish in the South Atlantic. The average number of MRFSS

intercept sites in each county ranges from 20 to 24.

In the red drum and seatrout model we use 4353 red drum and spotted seatrout
private/rental boat trips taken in the south Atlantic and Gulf of Mexico. Forty-six percent
of these angler trips target red drum. Red drum anglers have 22 years of experience and
fish 9 days each wave. Eighty-two percent own a boat. Sixty-two percent fish in the Gulf
of Mexico. Spotted seatrout anglers have 24 years of experience and fish 8 days each

wave. Eighty-one percent own a boat. Seventy-five percent fish in the Gulf of Mexico.

There are 58 county level fishing sites from North Carolina to Louisiana in the red
drum and seatrout model. Anglers choose across two species. Only a few county/species
alternatives have empty cells which leave 110 choices. For red drum 2% of all targeted
trips take place in Alabama, 61% take place in Florida, 2% in Georgia, 29% in Louisiana,
1% in Mississippi and North Carolina and 4% in South Carolina. Four percent of all
targeted spotted seatrout trips take place in Alabama, 45% take place in Florida, 7% in
Georgia, 33% in Louisiana, 4% in Mississippi, 1% in North Carolina and 5% in South
Carolina. The average travel cost over all alternatives for private/rental boat trips is $260
for red drum trips and $264 for spotted seatrout trips. Red drum targeted catch per day is
0.32 fish. Spotted seatrout targeted catch per day is 0.95 fish. The average number of

MREFSS intercept sites in each county is about 18 for each species.

In the snapper-grouper model we use 1086 red snapper, groupers and “other

snappers” boat trips taken in the Gulf of Mexico. Twenty-two percent target red snapper,
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67% target shallow water groupers, and 11% target other snapper species.’ Red snapper
anglers have 24 years of experience and fished an average of 6 days over the two months
prior to the intercepted trip. Sixty percent are boat owners. Thirty-five percent of the red
snapper anglers fish from charter boats. Grouper anglers have 21 years of experience and
fished an average of 7 days over the two months prior to the intercepted trip. Sixty-five
percent are boat owners. Twenty-one percent fish from charter boats. Other snapper
anglers have 23 years of experience and fished an average of 9 days over the two months
prior to the intercepted trip. Seventy-nine percent are boat owners. Eleven percent fish

from charter boats. Snapper-grouper anglers fish an average of 4 to 5 hours per day.

Snapper-grouper anglers choose across two modes, three species and 28 counties
in the Gulf of Mexico. Many mode/species/county alternatives have empty cells which
leave 71 alternatives. For red snapper targeted trips 51% take place in Alabama, 32% take
place in Florida, 9% in Louisiana and 9% in Mississippi. One percent of all targeted
grouper trips take place in Alabama, 99% take place in Florida and 0% in Louisiana and
Mississippi. Seven percent of all targeted other snappers trips take place in Alabama,

89% take place in Florida, 3% in Louisiana and 1% in Mississippi.

Over all alternatives the average travel cost for party/charter boat trips is $317 and
$183 for private/rental boat trips. Other snappers targeted catch per day is 0.004 fish on

party/charter trips and 0.03 on private/rental trips. Grouper targeted catch per day is 0.04

> The grouper species are: gag, red grouper, black grouper, grouper genus and
unidentified groupers. The other snapper species are: amberjack genus, Atlantic
spadefish, black sea bass, blackfin snapper, crevalle jack, gray snapper, gray triggerfish,
silver seatrout, snapper family, vermilion snapper, white grunt, yellowtail snapper and
Atlantic thread herring.
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fish on party/charter trips and 0.06 fish on private/rental trips. Red snapper targeted catch
per day is 0.02 fish on party/charter trips and 0.02 fish on private/rental trips. The average
number of MRFSS intercept sites in each county is 27 for party/charter trips and 19 for

private/rental trips.

Empirical Results

We present the conditional logit, nested logit, mixed logit and finite mixture
model results using the dolphin (Table 2), mackerel (Table 3), red drum (Table 4) and red
snapper (Table 5) data (see Table 1 for variable descriptions). We present estimation
results for mixed logits with a normally distributed travel cost parameter and with a
uniformly distributed travel cost parameter. We also attempted mixed logit models with
random travel cost and catch rate variables. Because these fully mixed models proved
difficult to estimate, convergence was difficult to achieve using standard software
packages and those that were estimated produced implausible results for several cases,
we focus our attention on the models that randomize the travel cost parameters only.°

Models were also attempted with log-normally distributed parameters but the fat upper

® For example, the big game catch parameter is distributed normally with a mean of -15
and a standard deviation of 23. The 2.5" and 97.5" percentiles are -61 and 30. Using the
mean travel cost parameter this would imply a 95% interval for willingness-to-pay for a
one fish increase in catch of (-$533.24, $264). The problem is magnified if an individual
in the tail of the TC distribution (small value) corresponds to either tail of the catch rate
distribution. For example, an individual in the travel cost distribution one standard
deviation above the mean (TC parameter = -.052) would have a 95% WTP interval of (-
$1,169.02, $578.94) for one additional fish. Therefore, we focus our attention on the
welfare estimates from the models that randomize the travel cost parameters only.
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tail of the log-normal distribution resulted in models for several species groups that

would not converge. As a result we do not report the log-normal results here.’

The socio-demographic variables defining the finite mixture probabilities are
comprised of years fished, boat ownership, and the number of days fished within the past
two months. Although the number of tiers for the finite mixture model is endogenous, in
practice it is necessary to pre-specify T and then utilize selection criteria to determine the
optimal number of tiers. To conduct this selection process we utilized the corrected
Akaike and Bayesian Information Criteria (MacLachlan and Peel 2000). The selection
criteria begins by specifying T=1 (a standard multinomial logit model) and then
increasing T until the selection criteria indicate that the number of tiers is over-fitting the
data. We normalize on the first tier and estimate T-1 sets of tier-specific parameters.
Consequently, all reported finite mixture results are interpreted relative to tier 1. For
example, suppose a positive coefficient is found on years fished for tier j: as income

increases the respondent is more likely to be of type j than type 1.

Although the selection criteria indicated that our estimation algorithm for dolphin
and big game, mackerel and small game and snapper-grouper should exceed two, we
elected to stop at two because we were unable to obtain reliable welfare estimates when T
exceeded two. This was similarly true for the red drum and seatrout model when T
exceeded three. This said, the criteria illustrate the largest marginal increases in our

statistical fit result when T=2. Therefore, although our test statistics do suggest that we

" Other parameter distributions could prove to be more successful.
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should increase the number of tiers, our results are capturing a majority of the

heterogeneity present within the data.

The basic logit results indicate that the models are adequate depictions of marine
recreational angling behavior. The model likelihood ratio statistics indicate that all
parameters are jointly significantly different from zero in all of the conditional and nested
logit models. The likelihood that an angler would choose a fishing site is negatively
related to the trip cost and positively related to the catch rates. In three of the four nested
logit models the parameter estimate on the inclusive value is statistically different from
zero and one which indicates that the nested model is more appropriate then the
conditional logit. In the mackerel nested logit model the parameter estimate on the
inclusive value is statistically different from zero but not statistically different from one
which indicates that the model fit is statistically the same as the conditional logit model at

the p=.01 level.

It is apparent that mixing of the travel cost coefficient is appropriate in the
dolphin model (Table 2). The statistical significance of the standard deviation parameter
in the normal mixing model (s) and the scale parameter in the uniform mixing model (s)
implies that either model would be preferred in a statistical test relative to the conditional
logit. The parameter signs are as expected with the travel cost parameter having a

negative mean and catch rates having a positive effect on site choice probabilities.

In the finite mixture model the travel cost parameters are negative and significant
across both tiers. Those in tier 2 are more responsive to travel costs than tier 1. When the

travel cost coefficients are weighted by the mean probability of tier participation the
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travel cost coefficient is similar to that estimated in the conditional logit model and the
distributional range of the mixed logit estimates. The catch coefficients are all positive
and statistically significant for tier 1, whereas only the small dolphin catch coefficient is
positive for the second tier and big dolphin and big game are both negative and
statistically significant. This illustrates that the finite mixture model is sorting anglers

based on their preferred targeting strategies.

The final set of coefficients uses the individual-specific data to sort anglers into
tier 1 and tier 2 in a probabilistic sense. Relative to tier 1, an individual is more likely to
be in tier 2 if they own their own boat and have fished more in the past two months than
those in tier 1. However, more experienced anglers, as measured by the number of years
spent fishing, are more likely to be in tier 1 and then tier 2.8 Furthermore, the model

places much more weight on an angler being within tier 1 (77%).

In Table 3 we present the mackerel and small game models. In all models,
Spanish mackerel catch has a negative effect on choice. Recall that since many king
mackerel target anglers have Spanish mackerel as a secondary target we include the
historic catch rate for both species as independent variables for both types of trips. This
result suggests that sites with a high ratio of Spanish mackerel to king mackerel are

avoided. The log of the number of interview sites is positively related to the site choice.

The travel cost only mixing models provide estimates that coincide with
expectations. Higher travel costs negatively influence site choice and higher catch rates

positively affect site choice—except for Spanish mackerel. King mackerel catch rates are

® Fishing experience could also be serving as a proxy for age and/or income.
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statistically insignificant in the normal mixed model. The king mackerel catch rate
becomes statistically significant in the uniformly mixed model, but the spread of the

distribution is implausibly large.

In both tiers of the finite mixture model anglers seek sites with higher catch rates
with the exception of king mackerel. The travel cost parameters are very similar to the
mixed logit parameter estimates which are substantially larger than the conditional logit
estimates. In addition, the lack of statistical significance in both tiers for king mackerel is
consistent with the broad parameter distribution within the mixed logit models. The most
notable difference between the three models is the large negative coefficient for Spanish
mackerel in both the conditional logit and mixed logit models, whereas it is positive and
statistically significant for tier 1. This suggests that the finite mixture model is

differentiating anglers based on their targeting preferences.

Focusing on the probability of tier participation variables, anglers with fewer
years of fishing experience and more days fished in the last two months are more likely to
be within the second tier. Combining this information with the tier-specific parameter
estimates illustrates that more experienced anglers value small game and Spanish

mackerel catch.

In the red drum models the likelihood that an angler would choose a fishing site is
negatively related to the trip cost and positively related to the targeted catch rates. The
log of the number of interview sites is positively related to the site choice. The travel cost
only mixed logit models is statistically different from the conditional logit. The red drum

and seatrout model is the only model for which we were able to reliably estimate the tier

27



specific parameters beyond two tiers. This is most likely due to the large sample size for
this model relative to the other models estimated. The catch coefficients for the two
species illustrate that all three tiers value red drum catch and that tiers 1 and 3 value
seatrout catch as well. Comparing the catch coefficients within each tier illustrates that all
three tiers prefer red drum catch over seatrout, but tier 2 possesses the largest difference
across species. Combining these results illustrates that tier 2 represents those individuals
that solely value drum and tier 3 represents those anglers who fish for drum and seatrout
Once again, the finite mixture results appear to be sorting anglers based on their species

catch preferences.

Anglers who have fished more in the last two months are more likely to be in tier
2. Less experienced anglers are more likely to be in tier 3 relative to tier 1. In addition, all
three tiers have a relatively high probability mass within the angler population. Tier 3
(41%) is ranked the highest with tier 1 (38%) ranking second and tier 2 (21%) ranking

third.

In the snapper-grouper models the likelihood that an angler would choose a
fishing site is negatively related to the trip cost and positively related to the targeted catch
rates. The mixed logit models return to the pattern of the mackerel and dolphin models
with the travel cost only model providing plausible parameter estimates and statistically
different results from the conditional logit. Both tiers in the finite mixture model illustrate
that anglers chose closer, less costly sites. The first tier anglers are more likely to fish in
counties with more interview sites, whereas second tier anglers tend to fish in counties

with fewer sites. With the earlier results we readily identify whether or not the
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segmentation was determined by the tier’s species preferences, this is not the case with
the snapper-grouper model. Both tiers possess positive and statistically significant
coefficients for grouper, snapper and red snapper. Although, the coefficients for grouper
and red snapper are larger in tier 2, the larger negative coefficient on travel costs does not
allow us to readily interpret these coefficients. We need to turn to the tier-specific
marginal valuations, discussed shortly, for the different species to determine whether or
not the finite mixture model is sorting by targeting strategy. The tier participation
probabilities illustrate that anglers who have fished a lot in the past two months and who
own a boat are more likely to be in tier 2, whereas those with more experience are likely

to be in tier 1.

In Table 5 we present the root mean squared error (RMSE) of the predicted
probability of site visitation across all sites for each of our models. The RMSE is a
goodness of fit statistic, the lower the measure the better the predictive ability of the

model.

K
Z(Sip _Sia)z
RMSE = +=

(19)

where S? is the predicted share averaged over the entire sample, S is the observed share

of visits to site i, and K is the number of sites.

Considering each species in turn, the preference heterogeneity models provide a
much better fit for the dolphin data. In the mackerel and small game models the mixed

logit model performs about as well as the conditional logit and nested logit models. The
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finite mixture model RMSE is about 7% lower than the others. The predictive ability of
red drum and seatrout models is virtually indistinguishable. In the snapper-grouper
models, the RMSE of the nested logit, mixed logit and the finite mixture models are 14%,

11% and 53% lower than that of the conditional logit models.

Welfare Estimates

The willingness-to-pay values for one additional fish are presented in Table 7. For
initial comparison purposes we present the midpoint estimate from the mixed logit and
finite mixture models. With the mixed logit we present the normal distribution which
leads to greater willingness-to-pay values relative to the uniform mixing distribution,

although the differences are not statistically significant.

The willingness-to-pay values for big dolphin have a wide range with a low of
$40 and a high of $412. Confidence intervals on willingness-to-pay from the conditional
logit and nested logit models indicate that these estimates are convergent valid®.
Willingness-to-pay from the mixed logit model is significantly lower than willingness-to-
pay from the conditional and nested logit models. On the other hand, willingness-to-pay
from the finite mixture model is significantly higher than willingness-to-pay from the
conditional and nested logit models. A similar pattern of results is found for small
dolphin and big game. The value of big game catch is not significantly different from

zero in the mixed logit model.

® Willingness-to-pay estimates are convergent valid if they are statistically equivalent.
Convergent validity lends confidence to the use of the nonmarket valuation estimates in
policy analysis.

30



The willingness-to-pay values for king mackerel have a much more narrow range
relative to dolphin with all confidence intervals overlapping each other. However, the
preference heterogeneity model estimates are at the low end of the range and not
significantly different from zero. The only estimate of the value of Spanish mackerel
catch that is not negative and significantly different from zero is from the finite mixture
model. The values of small game catch from the conditional logit, nested logit and mixed
logit models are convergent valid. The value of small game catch from the finite mixture

model is significantly larger than the others.

In contrast to the preceding results, the willingness-to-pay values for red drum are
very similar with a narrow range and overlapping confidence intervals. We conclude that
each model is convergent valid. The seatrout results are similar with only the finite

mixture model estimate having a non-overlapping confidence interval.

Red snapper willingness-to-pay values have a range from $84 with the preference
heterogeneity estimates within this range. Confidence intervals for the conditional logit,
mixed logit and the finite mixture model all overlap. The willingness-to-pay for red
snapper from the nested logit model is significantly lower than the others. The pattern of
willingness-to-pay for grouper is similar to that of red snapper. Willingness-to-pay values
for snappers converge for the (a) conditional logit and mixed logit model and (b) nested

logit and finite mixture model.

Comparing species-specific willingness-to-pay values to the species aggregate
values we find important differences. Willingness-to-pay for big dolphin is significantly

larger than small dolphin but not significantly different from big game catch (in three of
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four models). The confidence interval for king mackerel willingness-to-pay values
overlap with small game values in only one of four models. Red drum and spotted
seatrout willingness-to-pay values are not statistically different. In all models, red
snapper willingness-to-pay values are statistically different from snapper values. In two
of four models, red snapper willingness-to-pay values are statistically different from

grouper values.

In Table 7 we present the midpoint estimate from the mixed logit and finite
mixture models which obscures some of the gains from estimating these models. For the
mixed logits, we also consider the willingness-to-pay for the individual who falls at the
5" and 95™ percentile of the travel cost distribution. In the finite mixture models we
consider the willingness-to-pay values across tiers. Note, however, that given that each
individual possesses a continuous probability of being in each tier the “true”

representation of each angler is a mixture of all of the tiers.

The distributional range of values in the mixed logit models for three of the four
models is large. In the dolphin and big game models the willingness-to-pay values range
from $16 to $524 for big dolphin, $10 to $340 for small dolphin and $15 to $329 for big
game. The range is almost as dramatic in the mackerel and small game model with values
ranging from $0 to $37 (small game), $3 to $263 (king mackerel) and -$3 to -$239
(Spanish mackerel). In the snapper-grouper model, red snapper values range from $76 to
$226, grouper values range from $50 to $149 while snapper values range from $15 to
$43. Compared to these, the red drum model exhibits surprising homogeneity with

willingness-to-pay ranging less then $1 on either side of the mean.
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In the dolphin and big game finite mixture model individuals in tier 1 place a
much higher marginal value on big dolphin and big game fish than tier 2, whereas tier 2
places a higher marginal value on small dolphin. Willingness-to-pay for catch in the
mackerel and small game model is highest in tier 1 with anglers valuing only small game
and Spanish mackerel. The second tier is particularly puzzling since none of the species

are valued positively by anglers.

In the red drum and seatrout model the more experienced anglers of Tier 1
possess the highest marginal value for both species. Tier 2 possesses a slightly lower
marginal value for red drum but have a negative value for sea trout. In Tier 3, the more
inexperienced segment, possesses positive values for both species, but the values are less
than one-forth of those for tier 1. Furthermore, the estimates for tier 3 are the closest to
the marginal valuation estimates for the conditional and mixed logit models than the
other two tiers. Given that this tier possesses the highest distributional mass suggests that
this group is driving the mean welfare estimates under the conditional and mixed logit

models.

The tier participation probabilities in the snapper-grouper model illustrate that
more avid anglers and those who own a boat are more likely to be in Tier 2, whereas
those with more experience are likely to be in Tier 1. Tier 1 anglers possess much higher
values for all three species. This is consistent with our other tier-specific welfare
estimates where the more experienced anglers have larger values for the species than less
experienced anglers. Therefore, the finite mixture model is again sorting anglers

according to their species valuation preferences.
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Conclusions

This research estimates conditional, nested, mixed logit and finite mixture models
and outlines the advantages of each model using the conditional logit as the consistent
reference point using the MRFSS data. Mixed logit and finite mixture models are
increasingly utilized in the environmental economics literature because they facilitate the
investigation of the preference heterogeneity within the subject pool. To date, these
methods are rarely compared, however they are both usually compared to the standard

conditional logit model that provides their foundation.

We determine that the MRFSS data will support only a few species-specific
recreation demand models. We find sufficient evidence to suggest that single species
target models are an important consideration when modeling marine recreational fishing
demand. Confidence intervals for single species can be non-overlapping with related
species aggregates. Including the catch of important recreational species in species

aggregates can lead to biased estimates of willingness-to-pay for catch for these species.

The results from preference heterogeneity models illustrate that welfare
distributions can be highly heterogeneous and in some cases span across both the
negative and positive realm, even when the conditional logit estimates generate a mean
estimate that is firmly footed in the positive realm. This is due to a high degree of
preference heterogeneity in the MRFSS data and may call into question the accuracy of

the willingness-to-pay estimates from the traditional conditional and nested logit models.

In 2 of our 4 models, our analysis does little to lead to definitive conclusions
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about preferred welfare estimates for policy analysis. Considering the dolphin and big
game model, preference heterogeneity models generate (1) welfare estimates that differ
by an order of magnitude and (2) improved predictive ability relative to traditional
models. The finite mixture model is the best model for king mackerel in terms of
predictive ability but generates a negative welfare measure. In the other 2 models our
results provide evidence that leads to defensible conclusions. Each of our red drum and
seatrout models are convergent valid. In the case of red snapper, the finite mixture model
outperforms the others and the willingness-to-pay for red snapper is convergent valid
with that from the mixed logit and the conditional logit. In both cases we note, however,
that the limitations of the conditional logit model do not seem to detract from its

performance with these data.

The finite mixture model exploits the preference heterogeneity to determine
different types of anglers within the MRFSS data set. Although, the finite mixture model
does not estimate parameter distributions in many models it was able to unravel some of
the latent heterogeneity by partitioning anglers into types that depend on their species
targeting preferences and their levels of experience within the fishery. Although this
facilitates the type classification, it generated welfare estimates that are some times
strikingly different than the conditional, nested and mixed logit models. This suggests
that caution should be used when electing to use welfare estimates from finite mixture
models to guide policy because different specifications may generate a substantially

diverse profile of welfare measures.

Combined, our results indicate that preference heterogeneity is significant within
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the MRFSS data and that the welfare estimates empirically generated are highly
dependent on the model specification utilized. Given that the nested logit, mixed logit
and finite mixture model estimates are built on the foundation of the conditional logit
model and are statistically superior, it may be necessary to combine the welfare estimates
to determine the entire range of possible welfare estimates that may exist within this
heterogeneous population. For example, consider the recreational vs. commercial fishing
allocation issue for red snapper. The recreational value per catch should be conducted
with the best estimate available, in the $102-$123 range. If the results indicate that more
catch should be allocated to the recreational sector then the lower nested logit value, $39,

could be used in sensitivity analysis.

This research is the first to estimate the complete gamut of preference
heterogeneity models utilizing the same data set within the marine recreational fishing
literature. Our results are not sufficient to suggest that preference heterogeneity models
are preferred to the more traditional conditional logit and nested logit models. However,
preference heterogeneity is present in these data. Future research should continue with
the MRFSS and other recreational fishing data to develop empirical methodologies so

that more complete and reliable welfare profiles can be estimated.
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Table 1. Variable Descriptions

Variable

Big game
Charter

Boat owner
Days fished
Grouper

King mackerel
Pr_big dolphin
Pr_small dolphin
Red drum

Red snapper
Seatrout

Sites

Small game
Spanish mackerel
Snappers

Travel cost
Years fished

Description

Big game fish aggregate catch and keep per trip
=1 if party/charter mode, O otherwise

=1 if boat owner, O otherwise

Days fished in last 2 months

Grouper aggregate catch and keep per trip
King mackerel catch and keep per trip
Predicted dolphin catch and keep > 20 per trip
Predicted dolphin catch and keep < 20 per trip
Red drum catch and keep per trip

Red snapper catch and keep per trip

Seatrout catch and keep per trip

Number of MRFSS intercept sites in each county site

Small game aggregate fish catch and keep per trip
Spanish mackerel catch per trip
Aggregate other snappers catch per trip
Travel cost of a fishing trip

Fishing experience (in years)
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Table 2. Dolphin and Big Game Logit Models

Variable
Travel cost

SD (Travel cost)
Pr_big dolphin
Pr_small dolphin
Big Game
Ln(Sites)

v

Constant

Days fished
Years fished
Boat owner
Log-Likelihood

Alternatives
Cases

Conditional

Logit
-0.04
-26.85

491
11.21
0.66
12.28
2.36
2.02
-0.05
-1.13

-1811
34
823

Nested
Logit

-0.057
-22.68

5.83
10.18
0.62
7.64
4.68
2.62
-0.059
-1.19
0.40
10.51

-1748
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Mixed Logit
Normal  Uniform
-0.12 -0.16
-16.71 -14.09

0.08 -0.17
9.38 -12.69
4.31 4.52
8.55 8.96
0.43 0.39
6.79 6.31
-0.05 0.14
-0.06 0.17
-0.22 -0.23
-3.88 -3.97

Finite Mixture

Model
Tier 1 Tier 2
-0.01 -0.20
-6.88 -11.49
5.94 -0.69
6.19 -0.77
0.29 2.99
4.08 6.19
2.98 -9.39
2.94 -4.08
-0.23 -0.07
-2.10 -0.86
0.36
-1.47
24.56
6.33
-1.78
-2.19
1.09
4.60
-1308



Table 3. Mackerel and Small Game Logit Models
Finite Mixture

Mixed Logit Model
Conditional Nested
Variable Logit Logit Normal Uniform  Tier 1 Tier 2
Travel Cost -0.04 -0.04 -0.08 -0.11 -0.02 -0.20
-37.93 -32.53 -26.33  -21.20 -16.46  -15.38
SD (Travel cost) -0.04 -0.11
-13.00 -21.00
Small game 0.12 0.14 0.07 0.06 0.47 -0.18
4.36 4.46 -2.48 2.00 7.00 -3.18
King mackerel 0.78 1.05 0.52 0.35 -0.61 -0.50
2.47 2.97 1.53 1.02 -0.81 -0.99
Spanish mackerel -0.4 -0.34 -0.47 -0.51 0.40 -1.74
-4.57 -3.67 -5.15 -5.59 3.27 -7.11
Ln(Sites) 0.66 0.66 0.63 0.62 0.97 -0.02
14.65 14.66 12.84 12.08 11.14 -0.22
Inclusive Value 0.89
17.27
Constant 0.95
4.63
Days fished 2.69
3.33
Years fished -1.86
-3.58
Boat owner -0.15
-0.82
Log-Likelihood -4062 -4060 -3588
Alternatives 104
Cases 1562
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Table 4. Red Drum and Seatrout Logit Models

Mixed Logit Finite Mixture Model
Conditional Nested
Variable Logit Logit Normal Uniform  Tierl Tier 2 Tier 3
Travel cost -0.04 -0.04 -0.05 -0.07 -0.01 -0.08 -0.21
-67.63 -67.48 -54.00 -67.00 -25.74 -1299  -15.33
SD (Travel cost) 0.03 0.07
26.00 32.50
Red drum 0.45 0.45 0.65 0.73 0.46 2.39 1.66
6.94 6.16 6.74 7.46 4.58 9.58 4.71
Seatrout 0.28 0.32 0.35 0.38 0.36 -0.32 1.54
13.66 12.85 11.42 11.94 12.56 -1.12 12.58
Ln(Sites) 0.55 0.55 0.479  0.445 0.38 1.59 -0.44
19.75 19.63 1597  14.35 7.21 10.25 -4.06
Inclusive value 0.57
6.10
Constant -0.59 0.00
-2.73 0.02
Days fished 2.06 1.78
2.06 2.98
Years fished -0.90 -0.53
1.60 -1.72
Boat owner 0.02 0.05
0.11 0.45
Log-Likelihood -12,468 -12,460 -11,525
Alternatives 110
Cases 4353
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Table 5. Snapper-Grouper Logit Models

Travel cost

SD (Travel cost)
Snappers
Groupers

Red snapper
Ln(Sites)
Inclusive value
Constant

Days fished
Years fished
Boat owner
Log-Likelihood

Alternatives
Cases

Conditional Nested

Logit Logit
-0.04 -0.1
-29.91 -26.91
0.89 0.83
10.21 8.71
3.27 311
27.41 15.83
4.43 3.82
21.76 13.93
0.98 0.72
17.02 11.76

0.14
14.79
-2377 -2028
71
1086
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Mixed Logit
Normal Uniform
-0.04 -0.08
-40.00 -20.25
-0.01 0.08
-5.00 11.00
0.88 0.88
6.62 6.03
3.02 2.22
21.40 12.12
4,59 4.85
23.09 24.39
0.914 0.924
17.92 17.43

Finite Mixture
Model

Tier1
-0.02

-15.57

0.22
441
2.25
18.78
2.71
14.64
1.65
14.96

Tier 2
-0.34

-11.33

0.95
5.93
13.90
13.05
3.71
7.57
-0.25
-1.70

-0.54
-2.99
2.05
1.79
-0.26
-0.43
1.37
7.46

-1903



Table 6. Root Mean Square Error

Conditional
Logit
Dolphin and Big Game® 0.0537
Mackerel and Small Game  0.0106
Red Drum and Seatrout 0.0088
Snapper-Grouper 0.0187

®Normal Distribution

Nested
Logit

0.0508
0.0106
0.0088
0.0160
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Mixed
Logit®

0.0233
0.0105
0.0087
0.0176

Finite Mixture
Model

0.0188
0.0098
0.0088
0.0134



Table 7. Willingness-to-pay for One Additional Fish Caught and Kept

Pr_big dolphin
Pr_small dolphin
Big Game

King mackerel
Spanish Mackerel
Small Game

Red drum
Seatrout

Red snapper
Grouper

Snapper

aNormal Distribution

®’Mean WTP

°95% confidence interval in parentheses.

Conditional
Logit
$123

(100, 147)°

$17
(14, 19)
$40
(2, 115)
$19
(3, 35)
-$10
(-14, -6)
$3
(2,4)
$13
(9, 16)
$8
(7,9)
$123
(113, 134)
$91
(85, 96)
$25
(20, 30)

Nested
Logit
$103

(81, 126)
$11

(8, 14)

$81
(18, 142)
$25

(9, 41)

-$8
(-13, -4)
$3
(2,5)
$12

(9, 16)

$9

(7, 10)

$39

(33, 45)

$32

(28, 36)

$9

(7, 11)

43

Mixed
Logit?®
$37
(27, 48)
$4
3,5)
-0.50
(-14, 13)
$6
(-3, 15)
-$6
(-8, -4)
$1
0,2)
$12
(8, 16)
$7
(5,8)
$114
(103, 127)
$75
(66, 85)
$22
(15, 29)

Finite Mixture

Model®
$412
(272, 606)
$23
(13, 35)
$202
(55, 340)
-$23
(-83, 41)
$13
(4, 24)
$19
(13, 25)
$22
(16, 27)
$12
(10, 14)
$102
(87, 121)
$98
(88, 110)
$9
6, 13)
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