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Angler Heterogeneity and the Species-Specific Demand for  

Marine Recreational Fishing 

Abstract 

In this study we assess the ability of the Marine Recreational Fishery Statistics Survey 

(MRFSS) to support single-species recreation demand models. We use the 2000 MRFSS 

southeast intercept data combined with the economic add-on. We determine that the 

MRFSS data will support only a few species-specific recreation demand models. 

Considering species of management interest in the southeast, we focus on dolphin, king 

mackerel, red snapper and red drum. We examine single-species recreational fishing 

behavior using random utility models of demand. We explore mixed logit (i.e., random 

parameter) logit and finite mixture (i.e., latent class logit) models for dealing with angler 

heterogeneity. We compare these to the commonly used conditional and nested logit 

models in terms of the value of catching (and keeping) one additional fish. Mixed logit 

models illustrate that the value of catch can be highly heterogeneous and, in some cases, 

can include both positive and negative values. The finite mixture model generates value 

estimates that were some times strikingly different than conditional, nested and mixed 

logit models. Preference heterogeneity is significant within the MRFSS data. We find 

evidence that single-species models outperform multiple species models and recreational 

values differ.  
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Introduction 

Efficient and effective management is needed to accomplish an economically and 

biologically sustainable level of harvest in marine fisheries. Many marine fish species are 

overfished and are desired by both commercial fishermen and recreational anglers. As a 

result, fisheries managers must consider changes in allocations of the total allowable 

catch between the commercial and recreational sectors. The efficient allocation is that 

which equalizes the marginal value of the last fish caught (harvested) across sectors. This 

paper addresses two issues when measuring the marginal value of recreation catch: angler 

heterogeneity and species-specific values. We focus our attention on U.S. federally 

managed species and the Marine Recreational Fishery Statistics Survey (Hicks et al., 

1999).  

Much of the past marine recreational fishing demand research in the journal (e.g., 

Schuhmann 1998, Whitehead and Haab 1999, Whitehead 2006, Gentner 2007) and gray 

literature (e.g., McConnell and Strand 1994; Hicks et al. 1999; Haab, Whitehead, and 

McConnell 2001) ignores differences among anglers. Each of these studies assumes that 

homogeneous anglers make decisions about trip benefits, costs and constraints in the 

same way. It is likely that there exists heterogeneity among anglers with regard to how 

they might react to trip benefits, costs and constraints. Angler preferences are likely to 

vary substantially and this has potential implications for how they might value changes in 

fisheries regulations. For example, Kim, Shaw and Woodward (2007) incorporate income 

differences in their site choice model. Consequently, econometric models that allow for 

heterogeneity may yield better predictions of fishing behavior and changes in economic 

value.  
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Recent advancements in econometrics have allowed researchers to investigate 

heterogeneous preferences with random parameter models and finite mixture models. 

Each of these methods possesses its own advantages and have been applied in a number 

of different settings. The mixed logit model provides modeling flexibility (Train 1998). 

The mixed logit model can approximate any random utility based behavioral model, and 

allows for more flexible patterns of substitution between alternatives than the standard 

logit based models. In addition, the mixed logit model allows for random preference 

variation across individuals in the sample. In the context of recreational fishing, the 

mixed logit allows the researcher to estimate different economic values of changes in 

fishing quality for each angler type based on characteristics of the angler.  

The mixed logit model estimates a distribution of parameter estimates, and 

therefore a distribution of economic value measures and preferences. In contrast, finite 

mixture models can be used to estimate separate parameter estimates for individuals who 

possess similar preferences, declared a different “type” within the population (Boxall and 

Adamowicz 2002).  Motivation for different types of anglers in a recreational fishery can 

easily be made by noting that there exist a number of different objectives (catch-and-

release, partial retention, subsistence targeting). Each of these objectives can easily 

combine to represent a different type of angler. Therefore, a model that can be used to 

determine the number of types within the recreational fishery, the anglers who are 

contained in each type and the preferences for a representative angler within each type 

may be extremely advantageous. 
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For marine recreational fishing, management actions are typically directed at a 

specific species. Many studies of saltwater fishing have employed species aggregations 

(e.g., Bockstael, McConnell, and Strand 1999, Green, Moss, Spreen 1997, Schuhmann 

1998, Whitehead and Haab 1999 in the journals and McConnell and Strand 1994, Hicks 

et al. 1999, Haab, Whitehead, and McConnell 2001 in the gray literature). These 

approaches assume that an aggregate species model can roughly approximate changes in 

welfare resulting from species-specific changes. If the goal of the analysis is to measure 

changes in value due to changes in the conditions of a single species, it may be important 

to develop a species-specific model.   

The choice of target species and how to incorporate substitute species in a marine 

setting, where many species may be sought, is an important modeling decision. To 

accurately assess angler values for marine recreational fishing, modeling of target species 

and the existence of substitutes is critically important.  If anglers are assumed to target a 

species complex, when in fact they are targeting only one species, then estimates of 

angler preferences and economic values for fishing quality may be biased due to 

aggregation over species.  The degree of aggregation bias increases as species become 

less substitutable. 

We develop species-specific demand models for: (1) dolphin and big game in the 

south Atlantic (Florida), (2) mackerel and small game in the south Atlantic and Gulf of 

Mexico, (3) red drum and seatrout in the south Atlantic and Gulf of Mexico and (2) 

snapper-grouper in the Gulf of Mexico. For each species we develop a series of models 

where anglers are assumed to choose a mode of fishing (private boat, shore, or 
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party/charter), a single target species and species groups and a recreation site. We explore 

methods for dealing with differences in angler heterogeneity in recreation demand 

modeling.  We compare these techniques to the commonly used conditional and nested 

logit models. The rest of this paper is organized as follows. In the next two sections we 

describe the random utility model and data. Then we present results from conditional 

logit, nested logit, mixed logit and finite mixture models. In the final section we discuss 

the results, offer some conclusions and make some suggestions for future research.  

Random Utility Models 

Anglers will tend to choose fishing modes, target species and sites that provide 

the most utility. Consider an angler who chooses from a set of j recreation sites. The 

individual utility from the trip is decreasing in trip cost and increasing in trip quality: 

(1) iiiii qcyvu ε+−= ),(  

where u is the individual indirect utility function, v is the nonstochastic portion of utility, 

y is the per-trip recreation budget, c is the trip cost, q is a vector of site qualities, ε is the 

error term, and i is a member of s recreation sites, s = 1, … , i , … J. The random utility 

model assumes that the individual chooses the site that gives the highest utility 

(2) )   Pr( isvv ssiii ≠∀+>+= εεπ  

where π is the probability that site i is chosen. If the error terms are independent and 

identically distributed extreme value variates then the conditional logit site selection 

model results 
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The conditional logit model restricts the choices according to the assumption of the 

independence of irrelevant alternatives (IIA). Intuitively, imposing IIA on the choice 

patterns means that the researcher thinks that the relative probability of an angler 

choosing site A over site B is independent of the attributes of all other sites.  While not 

entirely unrealistic in the case of unrelated sites, many times some sites can be thought of 

as closely related groups.  This is often one motivation for the use of the nested logit 

model wherein sets of similar sites are grouped into nests. Within each nest, IIA still 

holds, but across nests, the strict substitution patterns implied by IIA are relaxed, thereby 

reducing one potential source of researcher induced bias. 

Consider a two-level nested model. The site choice involves a choice among M 

groups of species-mode nests, m = 1, … , M. Within each nest is a set of Jm sites, j= 1, … 

, Jm. When the nest chosen, n, is an element in M and the site choice, i, is an element in Jn 

and the error term is distributed as generalized extreme value the site selection 

probability in a two-level nested logit model is 
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where the numerator of the probability is the product of the utility resulting from the 

choice of nest n and site i and the summation of the utilities over sites within the chosen 

nest n. The denominator of the probability is the product of the summation over the 
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utilities of all sites within each nest summed over all nests. The dissimilarity parameter, 0 

< θ < 1, measures the degree of similarity of the sites within the nest. As the dissimilarity 

parameter approaches zero the alternatives within each nest become less similar to each 

other when compared to sites in other nests. If the dissimilarity parameter is equal to one, 

the nested logit model collapses to the conditional logit model where M × Jm = J.  

While encouraging, the nested logit model still requires the researcher to specify 

the nesting structure of the choices.  It is the researcher’s responsibility to specify 

mutually exclusive groups of sites for each nest.  At times this is intuitive.  For example, 

distinct geographic division may make the nests obvious.  But at other times, the nesting 

structure of the sites is not as straightforward.  Mis-specified nests can lead to biased 

parameter estimates and biased welfare measures. 

Further, both the conditional and nested logit models assume that angler 

preferences are homogeneous. That is, the marginal utility of a one unit change in any of 

the site attributes is the same for all individuals sampled.  The additional utility gained 

from a decrease in travel cost to a site is the same regardless of the other characteristics 

of the angler.  A wealthy angler and a poor angler both benefit equally from a one fish 

increase in the targeted catch rate.  A well-specified model will allow for preference 

heterogeneity across anglers and for flexible substitution patterns between sites. 

The mixed logit  allows for more flexibility in the substitution pattern between 

alternatives and allows for preference heterogeneity across individuals. In this paper we 

apply some of the simpler forms of the mixed logit to the four species (group) choice 
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models.  Typically, the deterministic indirect utility component for individual j and site i 

is assumed to be linear in a vector of individual and alternative specific variables: 

(5)  βihi xv =  

Where the vector  may contain variables that vary by alternative only (e.g. catch rates) 

or vary by alternative and individual (e.g. travel cost), but does not contain variables that 

vary only by individual.  Algebraically, individual specific variables drop out of equation 

(3) unless they are interacted with alternative specific dummy variables—a level of 

complication we have chosen to avoid for the purposes of this paper.   

ihx

For the conditional (and nested) logit models, the parameter vector β  is assumed 

to be constant across individuals. Imposing preference homogeneity may result in a 

misspecified utility function and inaccurate estimates of the value of changes in the 

independent variables. To allow for preference heterogeneity, we will assume that 

individual angler preferences randomly vary according to a prespecified population 

distribution such that: 

(6)  ihih ηββ +=
~

where  is an unknown, but constant locational parameter for preferences, and 
~
β η  is an 

individual and alternative specific random error component for preferences that is 

independently and (not necessarily identically) distributed across alternatives and 

identically (but not necessarily independently) distributed across individuals.  
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Substituting (6) and (5) into (3) gives a new conditional expression for the choice 

probability for a specific individual 

(7) 
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The choice probability in (7) is conditional on a specific value or realization of the 

preference error term, ikη .  However, to the researcher the most we can know, or assume, 

is the form of the distribution for ikη  up to an unknown parameter vector γ .  Assuming 

that the density function is ( )γηf , the probability in (7) must be integrated over all 

possible values of ikη  to eliminate the conditioning: 

(8)  ( ) ( )γηγηηππ
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Ideally, the integration problem in (8) would be such that the probability has a closed 

form expression as a function of the unknown parameters β and γ.  Unfortunately this is 

not the case.  Closed form expressions for equation (8) do not exist for common 

distributions (normal, uniform, log normal) and estimation of the parameters in (8) 

requires simulation of the integral.   

The most common way to simulate the probability is to repeatedly draw from the 

multivariate distribution of ikη , calculating the integrand in (8) at each draw and then 

averaging over the draws to find an estimate of ihπ  conditional on β and γ (Train 2003).  

Using maximum likelihood algorithms to search over the possible space of β and γ  (and 
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simulating the probability vector for each possible value of β and γ) will yield simulated 

maximum likelihood estimates of the utility function and the preference heterogeneity 

parameters. 

The finite mixture model allows the data to reveal the presence of angler 

heterogeneity.  In much the same way that it is difficult to justify the assumption of 

parameter homogeneity, in these models heterogeneity is driven by the data and assumed 

to be related to socioeconomic factors that sort anglers into tiers.  However, this sorting is 

really a construct for motivating the model, since an angler with a set of socioeconomic 

characteristics will receive different probability weights for each tier than anglers with 

different characteristics. Consequently, rather than assume completely random 

heterogeneity as in the mixed logit model, this model provides more structure to the form 

of heterogeneity. 

In the finite mixture site choice model, a vector of individual specific 

characteristics (Zi) is hypothesized to sort angler types into T tiers each having potentially 

different site choice preference as denoted by the preference parameters (βt) over site 

specific characteristics (Xk) where there are i ∈ I anglers, k ∈ K sites, and t ∈ T tiers. 

From the researchers’ perspective, neither tier membership nor site-specific 

indirect utility functions are fully observable.  Assuming that angler i is in tier t, the 

indirect utility of choosing site j is 

(9) V (Xij ,β
t | i ∈ t) = Xijβ

t + εijt         

 11



 
 

Following standard practices in random utility models (assuming that εikt is 

distributed as i.i.d. GEV I), the probability of observing individual i choosing site j given 

membership in tier t can be written as 

(10) P( j | Xij ,β
t ,i ∈ t) = eX ijβ

t

e
Xikβ

t

k∈K
∑

.    

Tier membership is also unknown to the researcher. Consequently, we specify the 

probability of tier membership given a vector of socio-demographic information (Zi).  We 

construct this probability using common logit probabilities as in the site choice models 

above: 

(11) P(i ∈ s | Zi ,δ
s ) = eZiδ

s

e
Ziδ

t

t∈T
∑

 

Notice that in this specification, the socio-demographic variables (Zi) do not vary over 

tiers, but rather the tier parameters (γt ) varies by tier.  

Equations (10) and (11) can be constructed for every individual i, tier t to 

calculate the overall probability of an observed choice as  

(12) Pi( j) = P(i ∈ t | Zi,δ
t )

t∈T
∑ × P( j | Xij ,β

t ,i ∈ t) 

In effect, using the tier probabilities in (11) the estimator mixes the tier-specific site 

choice models to estimate an overall probability of visiting site j.    
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Welfare Measurement 

Welfare analysis is conducted with the site selection models by specifying a 

functional form for the site utilities. It is typical to specify the utility function as linear: 

(13) 
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where α is the marginal utility of income. Since αy is a constant it will not affect the 

probabilities of site choice and can be dropped from the utility function.  

The inclusive value, IV, is measured as the natural log of the summation of the 

nest-site choice utilities: 

(14) 
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Hanemann (1999) shows that the choice occasion welfare change from a change in 

quality characteristics is:  

(15) 
α

βαβα ),;,(),;,( qqcIVqcIVWTP Δ+−
=  

where willingness-to-pay, WTP, is the compensating variation measure of welfare. Haab 

and McConnell (2003) show that the willingness-to-pay for a quality change (e.g., 

changes in catch rates) can be measured as  
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(16) 
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The welfare measures apply for each choice occasion (i.e., trips taken by the individuals 

in the sample). If the number of trips taken is unaffected by the changes in trip quality, 

then the total willingness-to-pay is equal to the product of the per trip willingness-to-pay 

and the average number of recreation trips, x .   

Welfare measures in a finite mixture model follow closely the formulation found 

in standard conditional logit models.  First, consider one of the T tiers estimated in the 

model.  Since the choice probability in each tier follows from the standard conditional 

logit, we can write the willingness-to-pay for a policy change conditional on membership 

in tier t as  

(17) t
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where X and X~ are the pre and post site specific amenities vectors.  The signing 

convention above corresponds to an improvement in site characteristics when moving 

from X  to X~ . 

To extend the welfare measure across tiers, the tier probabilities must be 

incorporated in order to find the unconditional CV for each individual as follows 
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which is found by weighting each tier-specific tier CV with the corresponding probability 

of being in that tier.  

The 95% confidence intervals for willingness-to-pay are calculated using the 

asymptotic procedure adapted from Krinsky and Robb (see Haab and McConnell 2002 

for a detailed explanation).  The confidence intervals are calculated by taking 1000 

independent draws from a multivariate normal distribution with mean equal to the 

estimated parameter vector for each model and variance covariance matrix equal to the 

corresponding estimated variance covariance matrix.  At each draw, willingness-to-pay is 

calculated to give 1000 draws from the empirical distribution of willingness-to-pay.  

Sorting the resulting empirical draws in ascending order and choosing the 2.5th and 97.5th 

percentile observations yields a consistent estimate of the desired confidence interval.   

Data Description 

The 2000 Marine Recreational Statistics Survey (MRFSS) southeast intercept data 

is combined with the economic add-on data to characterize anglers and their spatial 

fishing choices. Measures of fishing quality for individual species and aggregate species 

groups are calculated using the MRFSS creel data. We focus on shore, charter boat and 

private/rental boat hook-and-line day trip anglers. In the 2000 MRFSS intercept there are 

70,781 anglers interviewed from Louisiana to North Carolina. The 2000 intercept add-on 
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data included 42,051 of the intercepted anglers. Twenty-eight percent of these anglers 

have missing data on their primary target species. We exclude one percent who do not 

use hook and line gear. We also exclude 33 percent of the anglers that self-reported a 

multiple day trip and that live greater than 200 miles from the nearest site. Estimation of 

consumer surplus values for overnight trips tends to produce upwardly biased estimates 

of consumer surplus (McConnell and Strand, 1999). After deleting cases with missing 

values on other key variables we are left with 18,709 anglers in our sample. Of these 

anglers, 11,257 target a species.  

The theory behind random utility models is that anglers make fishing choices 

based on the utility (i.e., happiness) that each alternative provides. Anglers will tend to 

choose fishing modes, target species and sites that provide the most utility for the least 

cost. The angler target, mode and site selection decision depends on the costs and benefits 

of the fishing trip. Fishing costs include travel costs. Travel costs are equal to the product 

of round trip travel distance and an estimate of the cost per mile. In addition, a measure 

of lost income is included for anglers who lost wages during the trip. Benefits of the 

fishing trip include catch rates.  

Travel costs are computed using distances calculated with PCMiler by the NMFS. 

Travel costs are split into two separate variables depending on the ability of the angler to 

trade-off labor and leisure.  Ideally, travel costs would represent the full opportunity costs 

of taking an angling trip in the form of foregone expenses and foregone wages associated 

with taking an angling trip.  Because not all anglers can trade-off labor and leisure at the 

margin, we allow for flexibility in modeling these tradeoffs.  For anglers that can directly 
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trade-off labor and leisure at the wage rate (those that indicate they lost income by taking 

the trip), travel costs are defined as the sum of the explicit travel cost (i.e., round trip 

distance valued at $0.30 per mile) and the travel time valued at the wage rate. Travel time 

is calculated by dividing the travel distance by an assumed 40 miles per hour for travel.  

For anglers that do not forego wages to take a trip, travel cost is simply defined as the 

explicit travel cost. All charter boat anglers are assigned the average charter boat fee for 

the east coast of Florida ($107.06) obtained from Gentner, Price and Steinbeck (2001).  

We measure catch rate with the historic targeted harvest (hereafter, catch is 

synonymous with harvest). Five year (1995-1999) targeted historic catch rates per day are 

calculated using MRFSS data in each county of intercept to measure site quality. We also 

include the log of the number of MRFSS intercept sites in each county to control for site 

aggregation bias (Parsons and Needleman 1993). We focus our empirical efforts on 

recreational species with management interest in the southeastern U.S. Twenty-percent of 

anglers that report targeting a specific species target red drum. Six percent target dolphin, 

six percent target king mackerel, four percent target Spanish mackerel, and two percent 

target red snapper.  

In the dolphin and big game model we focus on dolphin and big game boat trips 

taken on the Atlantic coast of Florida. We also include the Gulf of Mexico trips taken 

from Monroe County (i.e., Florida Keys). Eighty-three percent of 823 anglers target 

dolphin relative to other big game.2 Dolphin anglers have 20 years of fishing experience 

and fish an average of 7 days each two month survey wave. Sixty-five percent are boat 

                                                 
2 The big game species included are: atlantic tarpon, billfish family, blackfin tuna, cobia, 
little tunny, sailfish, swordfish, tuna genus, wahoo, and yellowfin tuna.  
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owners. Thirteen percent of the trips are charter trips. Big game target anglers have 22 

years of experience and fish 11 days each wave. Sixty-nine percent are boat owners and 

17 percent are charter boat trips. Dolphin and big game anglers fish an average of 5 hours 

each day. 

There are 12 county level fishing sites in the dolphin and big game model. Each 

of these counties is comprised of a varying number of MRFSS intercept sites. Anglers 

choose among two modes and two target species. Eleven percent (n = 87) of all anglers 

target dolphin and choose among 8 county alternative sites in the party/charter mode. 

Seventy-three percent (n = 598) of dolphin target anglers choose among 10 county 

alternative sites in the private/rental mode. Fourteen percent (n = 136) of all anglers 

target big game and choose among 16 county/mode alternative sites in the combined 

party/charter and private/rental boat mode. 

With 823 anglers and 34 alternatives there are 27,982 cases. We present the 

means of the independent variables summed over the number of site choices within each 

target and mode category. Travel costs for dolphin target trips party/charter trips are 

about twice that of private/rental trips since they include the charter fee. After the 2000 

MRFSS add-on data was collected a 20” size limit regulation for dolphin was imposed by 

the South Atlantic Fishery Management Council. We investigate the effect of size limits 

by sorting the historic catch rate into fish greater than or equal to 20” and less than 20”. A 
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household production model is used to predict the number of big (>20”) and small (<20”) 

dolphin.3  

Predicted big dolphin catch per day is 0.19 for party/charter mode trips and 0.18 

for private/rental mode trips. Predicted small dolphin catch per day is 1.15 and 0.28 for 

party/charter and private/rental mode trips. The historic catch rate of big game fish per 

day is 0.13 for party/charter and private/rental mode trips. The average number of 

MRFSS interview sites ranges from 33 to 39 for dolphin and is 76 for big game.  

In the mackerel and small game model we focus on king mackerel, Spanish 

mackerel and small game private boat trips taken in the south Atlantic and Gulf of 

Mexico. Thirty-two percent of the sub-sample of 1526 are king mackerel target anglers 

who have 22 years of fishing experience and fish an average of 9 days each wave. Eighty 

percent are boat owners. Forty percent of boat trips are in the Gulf of Mexico. Seventeen 

percent of the anglers target Spanish mackerel and have 25 years of fishing experience 

and fish an average of 8 days each wave. Seventy-nine percent are boat owners. Forty-

nine percent of the private boat trips are in the Gulf of Mexico. Fifty-one percent target 

                                                 
3 A negative binomial model is used to estimate expected catch rates at each site for the 
relevant species for each angler by mode (McConnell, Strand and Blake-Hedges, 1995). 
The dependent variable in each model is the number of fish caught and kept per trip. 
Independent variables are the mean historic catch and keep rate at each site, years fished, 
boat ownership, charter mode, days fished during the past two months, hours fished and 
survey wave.  A necessary condition for using predicted catch as an independent variable 
in the recreation demand models is that catch varies with mean historic catch rate across 
site. Otherwise, predicted catch does not vary across site and is not helpful in explaining 
site selection. Therefore, only 6 of 11 catch models are candidates for using predicted 
catch in travel cost models. Only predicted catch in the dolphin and big game models 
helps explain site selection behavior in expected ways. Other predicted catch coefficients 
are either statistically insignificant or wrong signed. 
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small game species.4 Small game target anglers have 24 years of experience and fish 11 

days each wave. Eighty-one percent are boat owners and 64 percent fish in the Gulf of 

Mexico. Hours fished ranges from 4 to 5 per day. 

There are 51 county level fishing sites from North Carolina to Louisiana in the 

mackerel model. Anglers choose across three target species. A number of county/species 

alternatives have empty cells which leaves 104 alternatives. Twelve percent of small 

game angler trips take place in Alabama, 64% take place in Florida, 2% in Georgia, 1% 

in Louisiana, 4% in Mississippi, 14% in North Carolina and 4% in South Carolina. For 

king mackerel 17% of all targeted trips take place in Alabama, 61% take place in Florida, 

6% in Georgia, 1% in Louisiana, less than 1% in Mississippi, 7% in North Carolina and 

7% in South Carolina. Fifteen percent of all targeted Spanish mackerel trips take place in 

Alabama, 44% take place in Florida, 2% in Georgia, 1% in Mississippi, 32% in North 

Carolina and 5% in South Carolina.  

Since many king mackerel target anglers have Spanish mackerel as a secondary 

target, and vice versa, we include the historic catch rate for both species as independent 

variables for both types of trips. Summed over alternatives, the average travel cost for 

Gulf of Mexico and South Atlantic private/rental boat trips ranges from $240 to $278 

across the four types of choices. Small game targeted catch per day is 1.41 fish in the 

Gulf and 0.27 fish in the South Atlantic. King mackerel targeted catch per day is 0.08 fish 

in the Gulf and 0.09 fish in the south Atlantic. Spanish mackerel targeted catch per day is 

                                                 
4 The small game species are: common snook, sand seatrout, seatrout genus, florida 
pompano, striped bass, bonefish, mackerel genus, bluefish, silver seatrout, permit, greater 
amberjack, great barracuda, drum family, ladyfish, weakfish, irish pompano, jack family, 
lookdown, tarpon family and fat snook. 
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0.32 fish in the Gulf and 0.28 fish in the South Atlantic. The average number of MRFSS 

intercept sites in each county ranges from 20 to 24.  

In the red drum and seatrout model we use 4353 red drum and spotted seatrout 

private/rental boat trips taken in the south Atlantic and Gulf of Mexico. Forty-six percent 

of these angler trips target red drum. Red drum anglers have 22 years of experience and 

fish 9 days each wave. Eighty-two percent own a boat. Sixty-two percent fish in the Gulf 

of Mexico. Spotted seatrout anglers have 24 years of experience and fish 8 days each 

wave. Eighty-one percent own a boat. Seventy-five percent fish in the Gulf of Mexico. 

There are 58 county level fishing sites from North Carolina to Louisiana in the red 

drum and seatrout model. Anglers choose across two species. Only a few county/species 

alternatives have empty cells which leave 110 choices. For red drum 2% of all targeted 

trips take place in Alabama, 61% take place in Florida, 2% in Georgia, 29% in Louisiana, 

1% in Mississippi and North Carolina and 4% in South Carolina. Four percent of all 

targeted spotted seatrout trips take place in Alabama, 45% take place in Florida, 7% in 

Georgia, 33% in Louisiana, 4% in Mississippi, 1% in North Carolina and 5% in South 

Carolina. The average travel cost over all alternatives for private/rental boat trips is $260 

for red drum trips and $264 for spotted seatrout trips. Red drum targeted catch per day is 

0.32 fish. Spotted seatrout targeted catch per day is 0.95 fish. The average number of 

MRFSS intercept sites in each county is about 18 for each species.  

In the snapper-grouper model we use 1086 red snapper, groupers and “other 

snappers” boat trips taken in the Gulf of Mexico. Twenty-two percent target red snapper, 
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67% target shallow water groupers, and 11% target other snapper species.5 Red snapper 

anglers have 24 years of experience and fished an average of 6 days over the two months 

prior to the intercepted trip. Sixty percent are boat owners. Thirty-five percent of the red 

snapper anglers fish from charter boats. Grouper anglers have 21 years of experience and 

fished an average of 7 days over the two months prior to the intercepted trip. Sixty-five 

percent are boat owners. Twenty-one percent fish from charter boats. Other snapper 

anglers have 23 years of experience and fished an average of 9 days over the two months 

prior to the intercepted trip. Seventy-nine percent are boat owners. Eleven percent fish 

from charter boats. Snapper-grouper anglers fish an average of 4 to 5 hours per day. 

Snapper-grouper anglers choose across two modes, three species and 28 counties 

in the Gulf of Mexico. Many mode/species/county alternatives have empty cells which 

leave 71 alternatives. For red snapper targeted trips 51% take place in Alabama, 32% take 

place in Florida, 9% in Louisiana and 9% in Mississippi. One percent of all targeted 

grouper trips take place in Alabama, 99% take place in Florida and 0% in Louisiana and 

Mississippi. Seven percent of all targeted other snappers trips take place in Alabama, 

89% take place in Florida, 3% in Louisiana and 1% in Mississippi. 

Over all alternatives the average travel cost for party/charter boat trips is $317 and 

$183 for private/rental boat trips. Other snappers targeted catch per day is 0.004 fish on 

party/charter trips and 0.03 on private/rental trips. Grouper targeted catch per day is 0.04 

                                                 
5 The grouper species are: gag, red grouper, black grouper, grouper genus and 
unidentified groupers. The other snapper species are: amberjack genus, Atlantic 
spadefish, black sea bass, blackfin snapper, crevalle jack, gray snapper, gray triggerfish, 
silver seatrout, snapper family, vermilion snapper, white grunt, yellowtail snapper and 
Atlantic thread herring. 
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fish on party/charter trips and 0.06 fish on private/rental trips. Red snapper targeted catch 

per day is 0.02 fish on party/charter trips and 0.02 fish on private/rental trips. The average 

number of MRFSS intercept sites in each county is 27 for party/charter trips and 19 for 

private/rental trips.  

Empirical Results 

We present the conditional logit, nested logit, mixed logit and finite mixture 

model results using the dolphin (Table 2), mackerel (Table 3), red drum (Table 4) and red 

snapper (Table 5) data (see Table 1 for variable descriptions). We present estimation 

results for mixed logits with a normally distributed travel cost parameter and with a 

uniformly distributed travel cost parameter. We also attempted mixed logit models with 

random travel cost and catch rate variables.  Because these fully mixed models proved 

difficult to estimate, convergence was difficult to achieve using standard software 

packages and those that were estimated produced implausible results for several cases, 

we focus our attention on the models that randomize the travel cost parameters only.6 

Models were also attempted with log-normally distributed parameters but the fat upper 

                                                 

6 For example, the big game catch parameter is distributed normally with a mean of -15 
and a standard deviation of 23.  The 2.5th and 97.5th percentiles are -61 and 30.  Using the 
mean travel cost parameter this would imply a 95% interval for willingness-to-pay for a 
one fish increase in catch of (-$533.24, $264).  The problem is magnified if an individual 
in the tail of the TC distribution (small value) corresponds to either tail of the catch rate 
distribution. For example, an individual in the travel cost distribution one standard 
deviation above the mean (TC parameter = -.052) would have a 95% WTP interval of (-
$1,169.02, $578.94) for one additional fish. Therefore, we focus our attention on the 
welfare estimates from the models that randomize the travel cost parameters only. 
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tail of the log-normal distribution resulted in models for several species groups that 

would not converge. As a result we do not report the log-normal results here.7  

The socio-demographic variables defining the finite mixture probabilities are 

comprised of years fished, boat ownership, and the number of days fished within the past 

two months. Although the number of tiers for the finite mixture model is endogenous, in 

practice it is necessary to pre-specify T and then utilize selection criteria to determine the 

optimal number of tiers. To conduct this selection process we utilized the corrected 

Akaike and Bayesian Information Criteria (MacLachlan and Peel 2000). The selection 

criteria begins by specifying T=1 (a standard multinomial logit model) and then 

increasing T until the selection criteria indicate that the number of tiers is over-fitting the 

data.  We normalize on the first tier and estimate T-1 sets of tier-specific parameters.  

Consequently, all reported finite mixture results are interpreted relative to tier 1.  For 

example, suppose a positive coefficient is found on years fished for tier j: as income 

increases the respondent is more likely to be of type j than type 1. 

Although the selection criteria indicated that our estimation algorithm for dolphin 

and big game, mackerel and small game and snapper-grouper should exceed two, we 

elected to stop at two because we were unable to obtain reliable welfare estimates when T 

exceeded two.  This was similarly true for the red drum and seatrout model when T 

exceeded three.  This said, the criteria illustrate the largest marginal increases in our 

statistical fit result when T=2.  Therefore, although our test statistics do suggest that we 

                                                 
7 Other parameter distributions could prove to be more successful. 
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should increase the number of tiers, our results are capturing a majority of the 

heterogeneity present within the data.   

The basic logit results indicate that the models are adequate depictions of marine 

recreational angling behavior. The model likelihood ratio statistics indicate that all 

parameters are jointly significantly different from zero in all of the conditional and nested 

logit models. The likelihood that an angler would choose a fishing site is negatively 

related to the trip cost and positively related to the catch rates. In three of the four nested 

logit models the parameter estimate on the inclusive value is statistically different from 

zero and one which indicates that the nested model is more appropriate then the 

conditional logit. In the mackerel nested logit model the parameter estimate on the 

inclusive value is statistically different from zero but not statistically different from one 

which indicates that the model fit is statistically the same as the conditional logit model at 

the p=.01 level.  

It is apparent that mixing of the travel cost coefficient is appropriate in the 

dolphin model (Table 2). The statistical significance of the standard deviation parameter 

in the normal mixing model (s) and the scale parameter in the uniform mixing model (s) 

implies that either model would be preferred in a statistical test relative to the conditional 

logit. The parameter signs are as expected with the travel cost parameter having a 

negative mean and catch rates having a positive effect on site choice probabilities.  

In the finite mixture model the travel cost parameters are negative and significant 

across both tiers. Those in tier 2 are more responsive to travel costs than tier 1. When the 

travel cost coefficients are weighted by the mean probability of tier participation the 
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travel cost coefficient is similar to that estimated in the conditional logit model and the 

distributional range of the mixed logit estimates. The catch coefficients are all positive 

and statistically significant for tier 1, whereas only the small dolphin catch coefficient is 

positive for the second tier and big dolphin and big game are both negative and 

statistically significant.  This illustrates that the finite mixture model is sorting anglers 

based on their preferred targeting strategies.  

The final set of coefficients uses the individual-specific data to sort anglers into 

tier 1 and tier 2 in a probabilistic sense.  Relative to tier 1, an individual is more likely to 

be in tier 2 if they own their own boat and have fished more in the past two months than 

those in tier 1.  However, more experienced anglers, as measured by the number of years 

spent fishing, are more likely to be in tier 1 and then tier 2.8  Furthermore, the model 

places much more weight on an angler being within tier 1 (77%). 

In Table 3 we present the mackerel and small game models.  In all models, 

Spanish mackerel catch has a negative effect on choice. Recall that since many king 

mackerel target anglers have Spanish mackerel as a secondary target we include the 

historic catch rate for both species as independent variables for both types of trips. This 

result suggests that sites with a high ratio of Spanish mackerel to king mackerel are 

avoided. The log of the number of interview sites is positively related to the site choice.  

The travel cost only mixing models provide estimates that coincide with 

expectations.  Higher travel costs negatively influence site choice and higher catch rates 

positively affect site choice—except for Spanish mackerel. King mackerel catch rates are 

                                                 
8 Fishing experience could also be serving as a proxy for age and/or income. 
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statistically insignificant in the normal mixed model. The king mackerel catch rate 

becomes statistically significant in the uniformly mixed model, but the spread of the 

distribution is implausibly large. 

In both tiers of the finite mixture model anglers seek sites with higher catch rates 

with the exception of king mackerel.  The travel cost parameters are very similar to the 

mixed logit parameter estimates which are substantially larger than the conditional logit 

estimates. In addition, the lack of statistical significance in both tiers for king mackerel is 

consistent with the broad parameter distribution within the mixed logit models.  The most 

notable difference between the three models is the large negative coefficient for Spanish 

mackerel in both the conditional logit and mixed logit models, whereas it is positive and 

statistically significant for tier 1. This suggests that the finite mixture model is 

differentiating anglers based on their targeting preferences. 

Focusing on the probability of tier participation variables, anglers with fewer 

years of fishing experience and more days fished in the last two months are more likely to 

be within the second tier. Combining this information with the tier-specific parameter 

estimates illustrates that more experienced anglers value small game and Spanish 

mackerel catch. 

In the red drum models the likelihood that an angler would choose a fishing site is 

negatively related to the trip cost and positively related to the targeted catch rates. The 

log of the number of interview sites is positively related to the site choice. The travel cost 

only mixed logit models is statistically different from the conditional logit. The red drum 

and seatrout model is the only model for which we were able to reliably estimate the tier 
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specific parameters beyond two tiers.  This is most likely due to the large sample size for 

this model relative to the other models estimated. The catch coefficients for the two 

species illustrate that all three tiers value red drum catch and that tiers 1 and 3 value 

seatrout catch as well. Comparing the catch coefficients within each tier illustrates that all 

three tiers prefer red drum catch over seatrout, but tier 2 possesses the largest difference 

across species. Combining these results illustrates that tier 2 represents those individuals 

that solely value drum and tier 3 represents those anglers who fish for drum and seatrout 

Once again, the finite mixture results appear to be sorting anglers based on their species 

catch preferences. 

Anglers who have fished more in the last two months are more likely to be in tier 

2. Less experienced anglers are more likely to be in tier 3 relative to tier 1. In addition, all 

three tiers have a relatively high probability mass within the angler population. Tier 3 

(41%) is ranked the highest with tier 1 (38%) ranking second and tier 2 (21%) ranking 

third.   

In the snapper-grouper models the likelihood that an angler would choose a 

fishing site is negatively related to the trip cost and positively related to the targeted catch 

rates. The mixed logit models return to the pattern of the mackerel and dolphin models 

with the travel cost only model providing plausible parameter estimates and statistically 

different results from the conditional logit. Both tiers in the finite mixture model illustrate 

that anglers chose closer, less costly sites. The first tier anglers are more likely to fish in 

counties with more interview sites, whereas second tier anglers tend to fish in counties 

with fewer sites.  With the earlier results we readily identify whether or not the 
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segmentation was determined by the tier’s species preferences, this is not the case with 

the snapper-grouper model. Both tiers possess positive and statistically significant 

coefficients for grouper, snapper and red snapper.  Although, the coefficients for grouper 

and red snapper are larger in tier 2, the larger negative coefficient on travel costs does not 

allow us to readily interpret these coefficients.  We need to turn to the tier-specific 

marginal valuations, discussed shortly, for the different species to determine whether or 

not the finite mixture model is sorting by targeting strategy. The tier participation 

probabilities illustrate that anglers who have fished a lot in the past two months and who 

own a boat are more likely to be in tier 2, whereas those with more experience are likely 

to be in tier 1.  

In Table 5 we present the root mean squared error (RMSE) of the predicted 

probability of site visitation across all sites for each of our models. The RMSE is a 

goodness of fit statistic, the lower the measure the better the predictive ability of the 

model.  
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Considering each species in turn, the preference heterogeneity models provide a 

much better fit for the dolphin data. In the mackerel and small game models the mixed 

logit model performs about as well as the conditional logit and nested logit models. The 
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finite mixture model RMSE is about 7% lower than the others. The predictive ability of 

red drum and seatrout models is virtually indistinguishable. In the snapper-grouper 

models, the RMSE of the nested logit, mixed logit and the finite mixture models are 14%, 

11% and 53% lower than that of the conditional logit models.  

Welfare Estimates 

The willingness-to-pay values for one additional fish are presented in Table 7. For 

initial comparison purposes we present the midpoint estimate from the mixed logit and 

finite mixture models. With the mixed logit we present the normal distribution which 

leads to greater willingness-to-pay values relative to the uniform mixing distribution, 

although the differences are not statistically significant. 

The willingness-to-pay values for big dolphin have a wide range with a low of 

$40 and a high of $412. Confidence intervals on willingness-to-pay from the conditional 

logit and nested logit models indicate that these estimates are convergent valid9. 

Willingness-to-pay from the mixed logit model is significantly lower than willingness-to-

pay from the conditional and nested logit models. On the other hand, willingness-to-pay 

from the finite mixture model is significantly higher than willingness-to-pay from the 

conditional and nested logit models. A similar pattern of results is found for small 

dolphin and big game. The value of big game catch is not significantly different from 

zero in the mixed logit model. 

                                                 
9 Willingness-to-pay estimates are convergent valid if they are statistically equivalent. 
Convergent validity lends confidence to the use of the nonmarket valuation estimates in 
policy analysis. 
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The willingness-to-pay values for king mackerel have a much more narrow range 

relative to dolphin with all confidence intervals overlapping each other. However, the 

preference heterogeneity model estimates are at the low end of the range and not 

significantly different from zero. The only estimate of the value of Spanish mackerel 

catch that is not negative and significantly different from zero is from the finite mixture 

model. The values of small game catch from the conditional logit, nested logit and mixed 

logit models are convergent valid. The value of small game catch from the finite mixture 

model is significantly larger than the others.  

In contrast to the preceding results, the willingness-to-pay values for red drum are 

very similar with a narrow range and overlapping confidence intervals. We conclude that 

each model is convergent valid. The seatrout results are similar with only the finite 

mixture model estimate having a non-overlapping confidence interval. 

Red snapper willingness-to-pay values have a range from $84 with the preference 

heterogeneity estimates within this range. Confidence intervals for the conditional logit, 

mixed logit and the finite mixture model all overlap. The willingness-to-pay for red 

snapper from the nested logit model is significantly lower than the others. The pattern of 

willingness-to-pay for grouper is similar to that of red snapper. Willingness-to-pay values 

for snappers converge for the (a) conditional logit and mixed logit model and (b) nested 

logit and finite mixture model. 

Comparing species-specific willingness-to-pay values to the species aggregate 

values we find important differences. Willingness-to-pay for big dolphin is significantly 

larger than small dolphin but not significantly different from big game catch (in three of 
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four models). The confidence interval for king mackerel willingness-to-pay values 

overlap with small game values in only one of four models. Red drum and spotted 

seatrout willingness-to-pay values are not statistically different. In all models, red 

snapper willingness-to-pay values are statistically different from snapper values. In two 

of four models, red snapper willingness-to-pay values are statistically different from 

grouper values.  

In Table 7 we present the midpoint estimate from the mixed logit and finite 

mixture models which obscures some of the gains from estimating these models. For the 

mixed logits, we also consider the willingness-to-pay for the individual who falls at the 

5th and 95th percentile of the travel cost distribution.  In the finite mixture models we 

consider the willingness-to-pay values across tiers. Note, however, that given that each 

individual possesses a continuous probability of being in each tier the “true” 

representation of each angler is a mixture of all of the tiers.  

The distributional range of values in the mixed logit models for three of the four 

models is large. In the dolphin and big game models the willingness-to-pay values range 

from $16 to $524 for big dolphin, $10 to $340 for small dolphin and $15 to $329 for big 

game. The range is almost as dramatic in the mackerel and small game model with values 

ranging from $0 to $37 (small game), $3 to $263 (king mackerel) and -$3 to -$239 

(Spanish mackerel). In the snapper-grouper model, red snapper values range from $76 to 

$226, grouper values range from $50 to $149 while snapper values range from $15 to 

$43. Compared to these, the red drum model exhibits surprising homogeneity with 

willingness-to-pay ranging less then $1 on either side of the mean.    
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In the dolphin and big game finite mixture model individuals in tier 1 place a 

much higher marginal value on big dolphin and big game fish than tier 2, whereas tier 2 

places a higher marginal value on small dolphin. Willingness-to-pay for catch in the 

mackerel and small game model is highest in tier 1 with anglers valuing only small game 

and Spanish mackerel.  The second tier is particularly puzzling since none of the species 

are valued positively by anglers.  

In the red drum and seatrout model the more experienced anglers of Tier 1 

possess the highest marginal value for both species. Tier 2 possesses a slightly lower 

marginal value for red drum but have a negative value for sea trout. In Tier 3, the more 

inexperienced segment, possesses positive values for both species, but the values are less 

than one-forth of those for tier 1. Furthermore, the estimates for tier 3 are the closest to 

the marginal valuation estimates for the conditional and mixed logit models than the 

other two tiers.  Given that this tier possesses the highest distributional mass suggests that 

this group is driving the mean welfare estimates under the conditional and mixed logit 

models. 

The tier participation probabilities in the snapper-grouper model illustrate that 

more avid anglers and those who own a boat are more likely to be in Tier 2, whereas 

those with more experience are likely to be in Tier 1. Tier 1 anglers possess much higher 

values for all three species. This is consistent with our other tier-specific welfare 

estimates where the more experienced anglers have larger values for the species than less 

experienced anglers.  Therefore, the finite mixture model is again sorting anglers 

according to their species valuation preferences. 
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Conclusions 

This research estimates conditional, nested, mixed logit and finite mixture models 

and outlines the advantages of each model using the conditional logit as the consistent 

reference point using the MRFSS data. Mixed logit and finite mixture models are 

increasingly utilized in the environmental economics literature because they facilitate the 

investigation of the preference heterogeneity within the subject pool. To date, these 

methods are rarely compared, however they are both usually compared to the standard 

conditional logit model that provides their foundation.  

We determine that the MRFSS data will support only a few species-specific 

recreation demand models. We find sufficient evidence to suggest that single species 

target models are an important consideration when modeling marine recreational fishing 

demand. Confidence intervals for single species can be non-overlapping with related 

species aggregates. Including the catch of important recreational species in species 

aggregates can lead to biased estimates of willingness-to-pay for catch for these species.  

The results from preference heterogeneity models illustrate that welfare 

distributions can be highly heterogeneous and in some cases span across both the 

negative and positive realm, even when the conditional logit estimates generate a mean 

estimate that is firmly footed in the positive realm. This is due to a high degree of 

preference heterogeneity in the MRFSS data and may call into question the accuracy of 

the willingness-to-pay estimates from the traditional conditional and nested logit models. 

In 2 of our 4 models, our analysis does little to lead to definitive conclusions 
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about preferred welfare estimates for policy analysis. Considering the dolphin and big 

game model, preference heterogeneity models generate (1) welfare estimates that differ 

by an order of magnitude and (2) improved predictive ability relative to traditional 

models. The finite mixture model is the best model for king mackerel in terms of 

predictive ability but generates a negative welfare measure. In the other 2 models our 

results provide evidence that leads to defensible conclusions. Each of our red drum and 

seatrout models are convergent valid. In the case of red snapper, the finite mixture model 

outperforms the others and the willingness-to-pay for red snapper is convergent valid 

with that from the mixed logit and the conditional logit. In both cases we note, however, 

that the limitations of the conditional logit model do not seem to detract from its 

performance with these data. 

The finite mixture model exploits the preference heterogeneity to determine 

different types of anglers within the MRFSS data set. Although, the finite mixture model 

does not estimate parameter distributions in many models it was able to unravel some of 

the latent heterogeneity by partitioning anglers into types that depend on their species 

targeting preferences and their levels of experience within the fishery. Although this 

facilitates the type classification, it generated welfare estimates that are some times 

strikingly different than the conditional, nested and mixed logit models. This suggests 

that caution should be used when electing to use welfare estimates from finite mixture 

models to guide policy because different specifications may generate a substantially 

diverse profile of welfare measures. 

Combined, our results indicate that preference heterogeneity is significant within 
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the MRFSS data and that the welfare estimates empirically generated are highly 

dependent on the model specification utilized.  Given that the nested logit, mixed logit 

and finite mixture model estimates are built on the foundation of the conditional logit 

model and are statistically superior, it may be necessary to combine the welfare estimates 

to determine the entire range of possible welfare estimates that may exist within this 

heterogeneous population. For example, consider the recreational vs. commercial fishing 

allocation issue for red snapper. The recreational value per catch should be conducted 

with the best estimate available, in the $102-$123 range. If the results indicate that more 

catch should be allocated to the recreational sector then the lower nested logit value, $39, 

could be used in sensitivity analysis.  

This research is the first to estimate the complete gamut of preference 

heterogeneity models utilizing the same data set within the marine recreational fishing 

literature. Our results are not sufficient to suggest that preference heterogeneity models 

are preferred to the more traditional conditional logit and nested logit models. However, 

preference heterogeneity is present in these data. Future research should continue with 

the MRFSS and other recreational fishing data to develop empirical methodologies so 

that more complete and reliable welfare profiles can be estimated.  
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Table 1. Variable Descriptions 

Variable Description 

Big game Big game fish aggregate catch and keep per trip 

Charter =1 if party/charter mode, 0 otherwise 

Boat owner =1 if boat owner, 0 otherwise 

Days fished Days fished in last 2 months 

Grouper Grouper aggregate catch and keep per trip 

King mackerel King mackerel catch and keep per trip 

Pr_big dolphin Predicted dolphin catch and keep > 20” per trip 

Pr_small dolphin Predicted dolphin catch and keep < 20” per trip 

Red drum Red drum catch and keep per trip 

Red snapper Red snapper catch and keep per trip 

Seatrout Seatrout catch and keep per trip 

Sites Number of MRFSS intercept sites in each county site 

Small game  Small game aggregate fish catch and keep per trip 

Spanish mackerel Spanish mackerel catch per trip 

Snappers Aggregate other snappers catch per trip 

Travel cost Travel cost of a fishing trip 

Years fished Fishing experience (in years) 
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Table 2. Dolphin and Big Game Logit Models     

   Mixed Logit 
Finite Mixture 

Model 

Variable 
Conditional 

Logit 
Nested 
Logit Normal Uniform Tier 1 Tier 2 

Travel cost -0.04 -0.057 -0.12 -0.16 -0.01 -0.20 
 -26.85 -22.68 -16.71 -14.09 -6.88 -11.49 
SD (Travel cost)   0.08 -0.17   
   9.38 -12.69   
Pr_big dolphin 4.91 5.83 4.31 4.52 5.94 -0.69 
 11.21 10.18 8.55 8.96 6.19 -0.77 
Pr_small dolphin 0.66 0.62 0.43 0.39 0.29 2.99 
 12.28 7.64 6.79 6.31 4.08 6.19 
Big Game 2.36 4.68 -0.05 0.14 2.98 -9.39 
 2.02 2.62 -0.06 0.17 2.94 -4.08 
Ln(Sites) -0.05 -0.059 -0.22 -0.23 -0.23 -0.07 
 -1.13 -1.19 -3.88 -3.97 -2.10 -0.86 
IV  0.40     
  10.51     
Constant      0.36 
      -1.47 
Days fished      24.56 
      6.33 
Years fished      -1.78 
      -2.19 
Boat owner      1.09 
      4.60 
Log-Likelihood -1811 -1748   -1308 
Alternatives 34      
Cases 823      
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Table 3. Mackerel and Small Game Logit Models   

   Mixed Logit 
Finite Mixture 

Model 

Variable 
Conditional 

Logit 
Nested 
Logit Normal Uniform Tier 1 Tier 2 

Travel Cost -0.04 -0.04 -0.08 -0.11 -0.02 -0.20 
 -37.93 -32.53 -26.33 -21.20 -16.46 -15.38 
SD (Travel cost)   -0.04 -0.11   
   -13.00 -21.00   
Small game 0.12 0.14 0.07 0.06 0.47 -0.18 
 4.36 4.46 -2.48 2.00 7.00 -3.18 
King mackerel 0.78 1.05 0.52 0.35 -0.61 -0.50 
 2.47 2.97 1.53 1.02 -0.81 -0.99 
Spanish mackerel -0.4 -0.34 -0.47 -0.51 0.40 -1.74 
 -4.57 -3.67 -5.15 -5.59 3.27 -7.11 
Ln(Sites) 0.66 0.66 0.63 0.62 0.97 -0.02 
 14.65 14.66 12.84 12.08 11.14 -0.22 
Inclusive Value  0.89     
  17.27     
Constant      0.95 
      4.63 
Days fished      2.69 
      3.33 
Years fished      -1.86 
      -3.58 
Boat owner      -0.15 
     -0.82 
Log-Likelihood -4062 -4060   -3588 
Alternatives 104      
Cases 1562      
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Table 4. Red Drum and Seatrout Logit Models    
   Mixed Logit Finite Mixture Model 

Variable 
Conditional 

Logit 
Nested 
Logit Normal Uniform Tier 1 Tier 2 Tier 3 

Travel cost -0.04 -0.04 -0.05 -0.07 -0.01 -0.08 -0.21 
 -67.63 -67.48 -54.00 -67.00 -25.74 -12.99 -15.33 
SD (Travel cost)   0.03 0.07    
   26.00 32.50    
Red drum 0.45 0.45 0.65 0.73 0.46 2.39 1.66 
 6.94 6.16 6.74 7.46 4.58 9.58 4.71 
Seatrout 0.28 0.32 0.35 0.38 0.36 -0.32 1.54 
 13.66 12.85 11.42 11.94 12.56 -1.12 12.58 
Ln(Sites) 0.55 0.55  0.479  0.445 0.38 1.59 -0.44 
 19.75 19.63 15.97 14.35 7.21 10.25 -4.06 
Inclusive value  0.57      
  6.10      
Constant      -0.59 0.00 
      -2.73 0.02 
Days fished      2.06 1.78 
      2.06 2.98 
Years fished      -0.90 -0.53 
      1.60 -1.72 
Boat owner      0.02 0.05 
      0.11 0.45 
Log-Likelihood -12,468 -12,460   -11,525 
Alternatives 110     
Cases 4353      
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Table 5. Snapper-Grouper Logit Models   

   Mixed Logit 
Finite Mixture 

Model 

 
Conditional 

Logit 
Nested 
Logit Normal Uniform Tier 1 Tier 2 

Travel cost -0.04 -0.1 -0.04 -0.08 -0.02 -0.34 
 -29.91 -26.91 -40.00 -20.25 -15.57 -11.33 
SD (Travel cost)   -0.01 0.08   
   -5.00 11.00   
Snappers 0.89 0.83 0.88 0.88 0.22 0.95 
 10.21 8.71 6.62 6.03 4.41 5.93 
Groupers 3.27 3.11 3.02 2.22 2.25 13.90 
 27.41 15.83 21.40 12.12 18.78 13.05 
Red snapper 4.43 3.82 4.59 4.85 2.71 3.71 
 21.76 13.93 23.09 24.39 14.64 7.57 
Ln(Sites) 0.98 0.72  0.914  0.924 1.65 -0.25 
 17.02 11.76 17.92 17.43 14.96 -1.70 
Inclusive value  0.14     
  14.79     
Constant      -0.54 
      -2.99 
Days fished      2.05 
      1.79 
Years fished      -0.26 
      -0.43 
Boat owner      1.37 
      7.46 
Log-Likelihood -2377 -2028   -1903 
Alternatives 71     
Cases 1086     
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Table 6. Root Mean Square Error 

 
Conditional 

Logit 
Nested  
Logit 

Mixed  
Logita 

Finite Mixture 
Model 

Dolphin and Big Gamed 0.0537 0.0508 0.0233 0.0188 

Mackerel and Small Game 0.0106 0.0106 0.0105 0.0098 

Red Drum and Seatrout 0.0088 0.0088 0.0087 0.0088 

Snapper-Grouper 0.0187 0.0160 0.0176 0.0134 
aNormal Distribution 
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Table 7. Willingness-to-pay for One Additional Fish Caught and Kept 

 
Conditional 

Logit 
Nested  
Logit 

Mixed 
Logita 

Finite Mixture 
Modelb 

Pr_big dolphin $123 
(100, 147)c 

$103 
(81, 126) 

$37 
(27, 48) 

$412 
(272, 606) 

Pr_small dolphin $17 
(14, 19) 

$11 
(8, 14) 

$4 
(3, 5) 

$23 
(13, 35) 

Big Game $40 
(2, 115) 

$81 
(18, 142) 

-0.50 
(-14, 13) 

$202 
(55, 340) 

King mackerel $19 
(3, 35) 

$25 
(9, 41) 

$6 
(-3, 15) 

-$23 
(-83, 41) 

Spanish Mackerel -$10 
(-14, -6) 

-$8 
(-13, -4) 

-$6 
(-8, -4) 

$13 
(4, 24) 

Small Game $3 
(2, 4) 

$3 
(2, 5) 

$1 
(0, 2) 

$19 
(13, 25) 

Red drum $13 
(9, 16) 

$12 
(9, 16) 

$12 
(8, 16) 

$22 
(16, 27) 

Seatrout $8 
(7, 9) 

$9 
(7, 10) 

$7 
(5, 8) 

$12 
(10, 14) 

Red snapper $123 
(113, 134) 

$39 
(33, 45) 

$114 
(103, 127) 

$102 
(87, 121) 

Grouper $91 
(85, 96) 

$32 
(28, 36) 

$75 
(66, 85) 

$98 
(88, 110) 

Snapper $25 
(20, 30) 

$9 
(7, 11) 

$22 
(15, 29) 

$9 
(6, 13) 

aNormal Distribution 
bMean WTP 
c95% confidence interval in parentheses. 
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