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1. Introduction 

 

Environmental economists frequently use discrete choice models to analyze 

recreation site selection decisions.  These models have proven valuable when modeling 

scenarios where agents make extensive margin decisions from large choice sets and 

substitution is important.  However, when the individual’s choice set becomes very large (on 

the order of hundreds or thousands of alternatives), computational limitations can make 

estimation with the full choice set difficult if not intractable.  McFadden (1978) suggested 

that using a sample of alternatives in a conditional logit framework can obviate 

computational difficulties and produce consistent estimates.  His approach has been widely 

used throughout the literature (e.g., Parsons and Kealy 1992; Feather 1994; Parsons and 

Needelman 1992).  When implementing the sampling of alternatives approach, researchers 

typically assume that unobserved utility is independently, identically distributed type I 

extreme value.  The assumption implies that the odds ratio for any two alternatives does not 

change with the addition of a third alternative.  This property is known as the independence 

of irrelevant alternatives, or IIA.  Although necessary for consistent estimation under 

sampling of alternatives, it is well known that IIA is often a restrictive and inaccurate 

characterization of choice. 

In recent years, applied researchers have developed several innovative models that 

exploit recent computational advances to relax IIA.  Perhaps the most notable and widely 

used is the mixed logit model.  Mixed logit models generalize the conditional logit model by 

introducing unobserved preference heterogeneity through the parameters (Train 1998).  This 

variation allows for richer substitution patterns and thus makes the mixed logit model a 

powerful and attractive tool for discrete choice modeling.  However, adopting a mixed logit 

approach comes with a significant cost – there is no proof that the sampling of alternatives 

approach within the mixed logit framework will generate consistent parameter estimates.  

Consequently, researchers adopting the sampling of alternatives approach are forced to 
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choose either asymptotic unbiasedness and restrictive substitution patterns with conditional 

logit or asymptotic bias and more flexible substitution patterns with mixed logit.1  

Additionally in a mixed logit model, preference heterogeneity is often introduced 

through analyst-specified parametric distributions for the random parameters.  The 

researcher's choice of error distribution thus becomes an important modeling judgment.  In 

practice the normal distribution is often employed, although its well known restrictive 

skewness and kurtosis properties raise the possibility of misspecification.  Alternative 

parametric mixing distributions have been proposed (e.g., truncated normal, log normal, 

triangular, uniform), but in each case misspecification remains a concern (see Hess and Rose, 

2006). 

Both of these problems can be overcome through the use of a finite mixture or latent 

class model estimated via the expectation-maximization (EM) algorithm.  The latent class 

approach probabilistically assigns individuals to classes, where preferences are 

heterogeneous across – but homogeneous within – classes.  This approach allows the 

researcher to recover separate preference parameters for each consumer type without 

assuming a parametric mixing distribution.  Latent class models can be conveniently 

estimated with the recursive EM algorithm.  Doing so transforms estimation of the non-IIA 

mixed logit model from a one-step computationally intensive estimation into a more feasible 

recursive estimation of IIA conditional logit models.  By reintroducing the IIA property at 

each maximization step of the recursion, sampling of alternatives can be used to produce 

consistent parameter estimates (von Haefen and Jacobsen, unpublished).  The implications of 

this estimation strategy for welfare analysis have not been investigated in the recreation 

demand context previously. 

 In this paper, we empirically evaluate the welfare implications of this novel 

estimation strategy for large choice set problems using a recreational dataset of Wisconsin 

anglers.  The Wisconsin dataset is attractive for this purpose because it includes a large 

                                                      

1 See McConnell and Tseng (200) and Nerella and Bhat (2004) for a discussion and empirical evaluation of 
sampling with mixed logit. 
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number of recreational destination alternatives (569 lakes in total) that raises difficult but not 

insurmountable computational challenges for estimation with the full choice set.  By 

comparing estimates generated with the full choice set to estimates generated with samples of 

alternatives of different sizes, we can gauge the benefits and costs of sampling of alternatives 

in terms of reduced estimation run time and efficiency loss.  Our strategy for quantifying 

these benefits and costs involves repeatedly running latent class models on  random samples 

of alternatives of different sizes (in particular, 50%, 25%, 12.5%, 5%, 2%, and 1% sample 

sizes).  Our results suggest that for our preferred latent class specification, using a sample of 

alternatives that is 12.5% of the full choice set will generate on average a 75% time savings 

and 51% increase in the 95% confidence intervals for the five willingness to pay measures 

we construct.  We also find that the efficiency losses for sample sizes as small as 5% of the 

full set of alternatives may be sufficiently informative for policy purposes, and that smaller 

sample sizes often generate point estimates with very large confidence intervals.  

 The paper proceeds as follows. Section two summarizes the conditional and mixed 

logit models.  Section three describes large choice set problems in discrete choice modeling.  

Section four details the latent class model estimated via the EM algorithm as well as 

sampling of alternatives in a mixture model.  Section five presents our empirical application 

with the Wisconsin angler dataset.  Section six concludes with a discussion of directions for 

future research. 

 

2. The Discrete Choice Model 

 

This section reviews the conditional logit model, the IIA assumption and the mixed 

logit model with continuous and discrete mixing distributions.  We begin by briefly 

discussing the generic structure of discrete choice models.  Economic applications of discrete 

choice models employ the random utility maximization (RUM) hypothesis and are widely 

used to model and predict qualitative choice outcomes (McFadden 1974).  Under the RUM 

hypothesis, utility maximizing agents are assumed to have complete knowledge of all factors 

that enter preferences and determine choice.  However, the econometrician’s knowledge of 
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these factors is incomplete, and therefore preferences and choice are random from her 

perspective.  By treating the unobserved determinants of choice as random draws from a 

distribution, the probabilities of choosing each alternative can be derived.  These 

probabilities depend in part on a set of unknown parameters which can be estimated using 

one of many likelihood-based inference approaches (see Train (2003) for a detailed 

discussion).   

More concretely, the central building block of discrete choice models is the 

conditional indirect utility function, Uni, where n indexes individuals and i indexes 

alternatives. A common assumption in empirical work is that Uni can be decomposed into 

two additive components, Vni and εni.  Vni embodies the determinants of choice such as travel 

cost, site characteristics, and demographic / site characteristic interactions that the 

econometrician observes as well as preference parameters.  In most empirical applications, a 

linear functional form is assumed, i.e., Vni = βn’xni where xni are observable determinants of 

choice and βn are preference parameters that may vary across individuals.  εni captures those 

factors that are unobserved and idiosyncratic from the analyst’s perspective.  Under the RUM 

hypothesis, individual n selects recreation site i if it generates the highest utility from the 

available set of J alternatives (indexed by j).  This structure implies the individual’s decision 

rule can be succinctly stated as: 

alternative  chosen 
        , .n ni ni n nj nj

i iff
x x j iβ ε β ε′ ′+ > + ∀ ≠

 

 

2.1 Conditional Logit 

 

Different distributional specifications for βn and εni generate different empirical 

models.  One of the most widely used models is the conditional logit which arises when βn = 

β, n∀  and each εni is an independent and identically distributed (iid) draw from the type I 

extreme value distribution with scale parameter µ.  The probability that individual n prefers 

alternative i takes the well known form (McFadden 1974): 
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where the second equality follows from the fact that β and µ are not separately identified and 

thus, with no loss in generality, µ can be normalized to one.  

The conditional logit model embodies the IIA property (which means that the odds 

ratio for any two alternatives is unaffected by the inclusion of any third alternative). To see 

this, consider the ratio of probabilities for sites i and k: 
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Because Pni and Pnk  share the same denominator, the observable attributes for all other 

alternatives drops out, and thus the odds ratio will not change with the addition of any third 

alternative.  This property of the conditional logit model is a direct result of the independent 

type I extreme value assumption.   

IIA’s restrictive implications for behavior can best be appreciated in terms of 

substitution patterns resulting from the elimination of a choice alternative.  Consider the case 

of a recreational site closure due to an acute environmental incident.  Assume the closed site 

has unusually high catch rates for trout.  Intuitively, it seems plausible that the individuals 

who previously chose the closed site have a strong preference for catching trout and would 

thus resort to visiting other sites with relatively high trout catch rates when their preferred 

site is closed.  IIA and the conditional logit model predict, however, that individuals would 

shift to other sites in proportion to their selection probabilities. In other words, those sites 

with the highest selection probabilities would see the largest increase in demand even if they 

do not have relatively high trout catch rates.   

To generate more realistic substitution patterns, environmental economists have 

frequently used nested logit models where those sites with common features (e.g., high trout 

catch rates) are grouped into common nests that exhibit greater substitution effects (Ben-

Akiva 1973; Train et al. 1987; Parsons and Kealy 1992; Jones and Lupi 1997; Parsons and 
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Hauber 1998; Shaw and Ozog 1999; and Parsons et al. 2000).  With these models, the 

angler’s decision can be represented as a sequence of choices.  For example, an angler’s 

choice could be modeled as an initial decision of lake or river fishing, a conditional choice of 

target species, and a final choice of recreation site.  Although the nested logit assumes that 

within each nest the IIA assumption holds, it relaxes IIA across different nests. 

Despite its ability to relax IIA, the nested logit suffers from significant shortcomings.  

One shortcoming is the sensitivity of parameter and welfare estimates to different nesting 

structures (Kling and Thomson 1996).  Another arises because all unobserved heterogeneity 

enters preferences through an additive error term, a characteristic shared by the conditional 

logit model.  Although observed preference heterogeneity can be introduced by interacting 

observable demographic data with site attributes, the fact that unobserved heterogeneity 

enters preferences additively limits the analyst’s ability to allow for general substitution 

patterns along multiple dimensions (e.g., catch rates, boat ramps, and water quality).  This 

point seems especially relevant for situations where preferences for attributes are diverse or 

polarized. 

 

2.2 Mixed Logit 

 

To relax IIA and introduce non-additive unobserved preference heterogeneity, applied 

researchers frequently specify a mixed logit model (Train 1998; McFadden and Train 2000).  

Mixed logit generalizes the conditional logit by introducing unobserved taste variations for 

attributes through the coefficients.  This is accomplished by assuming a probability density 

function for nβ , ( | )nf β θ , where θ  is a vector of parameters.  Introducing preference 

heterogeneity in this way results in correlation in the unobservables for sites with similar 

attributes and thus relaxes IIA.  Conditional on nβ , the probability of selecting alternative i 

in the mixed logit is: 

exp( )( ) .
exp( )

n ni
ni n

n njj

xP
x

ββ
β

=
∑
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The probability densities for nβ  can be specified with either a continuous or discrete mixing 

distribution.  With a continuous mixing distribution, the unconditional probability of 

selecting alternative i is: 

( ) ( | ) .ni ni n n nP P f dβ β θ β= ∫
 When the dimension of nβ  is moderate to large, analytical or numerical solutions for the 

above integral are generally not possible.  However, niP  can be approximated via simulation 

(Boersch-Supan and Hajivassiliou 1990; Geweke et al. 1994; McFadden and Ruud 1994).  

This involves generating several pseudo-random draws from ( | )nf β θ , calculating ( )ni nP β  

for each draw, and then averaging across draws.  By the law of large numbers, this simulated 

estimate of niP  will converge to its true value as the number of simulations grows large. 

In practice, a limitation with the continuous mixed logit model is that the mixing 

distribution often takes an arbitrary parametric form.  Several researchers have investigated 

the sensitivity of parameter and welfare estimates to the choice of alternative parametric 

distributions (Revelt and Train 1998; Train and Sonnier 2003; Rigby et al. 2008; Hess and 

Rose 2006).  The consensus finding is that distribution specification matters.  For example, 

Hensher and Greene (2003) studied the welfare effect of a mixed logit model with lognormal, 

triangular, normal, and uniform distributions.  Although the mean welfare estimates were 

very similar across the normal, triangular, and uniform distributions, the lognormal 

distribution produced results that differed by about a factor of three.  In addition, although 

the mean welfare estimates were similar across the three tested distributions, the standard 

deviations varied by as much as 17 percent.   

Concerns about arbitrary distributional assumptions have led many environmental 

economists to specify discrete or step function distributions that can readily account for 

different features of the data.  The unconditional probability is the sum of logit kernels 

weighted by class membership probabilities: 

( ), ( )
C

n nc n n c
c

P S z Pδ β=∑ . 
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where ( ),nc nS zδ  is the probability of being in class c (c = 1,…,C) and δ  and zn are 

parameters and observable demographics that influence class membership, respectively. If 

the class membership probabilities are independent of zn, then the mixing distribution has a 

nonparametric or “discrete-factor” interpretation (Heckman and Singer 1984; Landry and Liu 

2009).  More commonly in environmental economics, however, the class membership 

probabilities depend on observable demographics which parsimoniously introduces  

additional preference heterogeneity.  In these cases, the class probabilities typically assume a 

logit structure: 

( ) ( )

( )
1

exp
, .

exp

c n
nc n C

l n
l

z
S z

z

δ
δ

δ
=

=

∑
 

where 1[ ,..., ]Cδ δ δ= . 

 

3. Large Choice Sets 

 

The specification of the choice set is vital to the effective implementation of any 

discrete choice model.  Choice set definition deals with specifying the objects of choice that 

enter an individual’s preference ordering.  In practice, defining an individual’s choice set is 

influenced by the limitations of available data, the nature of the policy questions addressed, 

the analyst’s judgment, and economic theory (von Haefen 2008).  In recreation demand 

applications, the combination of these factors in a given application can lead to large choice 

set specifications (Parsons and Kealy 1992, Parsons and Needelman 1992, Feather 2003) that 

raise computational issues in estimation.2  This section reviews commonly used strategies for 
                                                      

2 Here we are abstracting from the related issue of consideration set formation (Manski 1977; Horowitz 1991), 
or the process by which individuals reduce the universal set of choice alternatives down to a manageable set 
from which they seriously consider and choose.  Consideration set models have received increased interest in 
recent environmental applications despite their significant computational hurdles (Haab and Hicks 1997; 
Parsons et al. 2000; von Haefen 2008).  Nevertheless, to operationalize these models the analyst must specify 
the universal set from which the consideration set is generated as well as the choice set generation process. In 
many applications, the universal set is often very large. 
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addressing the computational issues raised by large choice set specifications with a detailed 

treatment of the sampling of alternatives method. 

 

3.1 Alternative Strategies 

 

There are three generic strategies for addressing the computational issues raised by 

large choice sets: 1) aggregation, 2) separability, and 3) sampling.  Solutions (1) and (2) 

require the analyst to make additional assumptions about preferences or price and quality 

movements within the set of alternatives. 

Aggregation methods make the assumption that alternatives can be grouped into 

representative choice options.  For a recreational demand context, similar recreation sites can 

be treated as one; in housing, a group of homes in a given sub-development can be 

aggregated.  This methodology can be effective but is problematic in that the success of 

estimation is entirely dependent on the assumptions made in the aggregation.  McFadden 

(1978) and Ben-Akiva and Lerman (1985) have both shown that this technique can produce 

biased estimates if the utility variance and composite size within aggregates is not accounted 

for.  Although the composite size is commonly observed or easily proxied in recreation 

demand applications, the utility variance depends on unknown parameters and is therefore 

unknown and difficult to proxy by the analyst.  Kaoru amd Smith (1990), Parsons and 

Needleman (1992) and Feather (1994) empirically investigate the bias arising from ignoring 

the utility variance with a recreation data set. In some cases, they find large differences 

between disaggregated and aggregated models, but their results suggest no clear direction of 

bias from aggregation.  Similarly, Lupi and Feather (1998) consider a partial site aggregation 

method where the most popular sites and those most important for policy analysis will enter 

as individual site alternatives, while the remaining sites are aggregated into groups of similar 

sites.  Their empirical results suggest partial site aggregation can reduce but not eliminate 

aggregation bias. 

Separability assumptions allow the researcher to selectively remove alternatives 

based on whether recreation sites support the type of recreation considered.  For example, it 
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is common in recreation demand analysis to focus on just boating, fishing, or swimming 

behavior.  In these cases, sites that do not support a particular recreation activity are often 

eliminated.  Likewise, recreation studies frequently focus on day trips, which implies a 

geographic boundary to sites that can be accessed with a day trip.  Empirical evidence by 

Parsons and Hauber (1998) on the spatial boundaries for choice set definition suggests that 

after some threshold distance, adding more alternatives has a negligible effect on estimation 

results.  Nevertheless, even if the separability assumptions that motivate shrinking the choice 

set are valid, the remaining choice set can still be intractably large, particularly when sites are 

defined in a disaggregate manor.     

  

3.2 Sampling of Alternatives 

 

The third common solution is to use a sample of alternatives the decision maker faces 

in estimation.  By selecting a random subset of the relevant alternatives, the researcher is left 

with a much more computationally tractable choice set.  McFadden (1978) proved the 

approach will produce consistent estimates as long as the resulting choice probability ratios 

do not change due to the elimination of choice alternatives.  This is feasible within the 

standard logit model due to the IIA assumption.  Sampling has been successfully utilized and 

demonstrated in the literature (Parsons and Kealy 1992; Sermons and Koppelman 2001; 

Waddell 1996; Bhat et al. 1998; Guo and Bhat 2001; Ben-Akiva and Bowman 1998, von 

Haefen and Jacobsen, unpublished).   

When faced with a very large choice set, randomly sampling from alternatives can 

simplify the computational process while still producing consistent estimates as long as the 

uniform conditioning property holds (McFadden 1978).  This necessary condition requires 

that each alternative has an equal probability of being included in the sampled choice set.  

More formally, uniform conditioning states that if there are two alternatives, i and j which are 

both members of the full set of alternatives C and both have the possibility of being an 

observed choice, the probability of choosing a sample of alternatives D (which contains the 

alternatives i and j) is equal, regardless of whether i or j is the chosen alternative.    
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Random parameter models, as shown earlier, can account for preference 

heterogeneity and in some cases provide for an improvement in fit over the conditional logit 

model.  However, when faced with a large choice set, the continuous distribution method 

cannot provide consistent estimates when sampling from alternatives.  Recall that the mixed 

logit probability is represented by: 

βθββ dfLP nni )|()(∫=  

The relative probability of choosing alternative i over i* is: 

βθβ
β

β

βθβ
β

β

df
x

x

df
x

x

P
P

j njn

nin

j njn

nin

ni

ni

)|(
)exp(

)exp(

)|(
)exp(

)exp(

** ∫ ∑

∫∑
=  

The denominators are inside the integral and therefore do not cancel.  The resulting relative 

choice probabilities depend on the other alternatives and IIA does not hold. 

McConnell and Tseng (2000) perform an empirical analysis on beach use and 

recreational fishing to evaluate sampling of alternatives.  Since there is no theoretical 

foundation for sampling of alternatives in a continuous distribution mixture model, they seek 

to broaden the understanding of the mixed logit model through empirical evidence.  Their 

results with a recreation data set consisting of a relatively small choice set suggest that 

sampling in a continuous distribution mixture model does not alter the results significantly or 

systematically, although their results should be interpreted cautiously given the same number 

of sampling replications they consider.  Nerella and Bhat (2004) perform a similar analysis 

with simulated data. They analyze the effect of sample size on the empirical accuracy and 

efficiency of multinomial and mixed multinomial models.  Their results suggest that analysts 

can, in practice, use a 12.5% sample in the conditional logit model and down to a 25% 

sample in the mixed logit model. 

 

3.3 Sampling in a Mixture Model 
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Utilizing the latent class model estimated via the recursive expectation-maximization 

(EM) algorithm, sampling of alternatives can generate theoretically consistent estimates (von 

Haefen and Jacobsen, unpublished).  This section describes use of the EM algorithm to 

estimate a latent class model and addresses the issues of model selection, and computation of 

standard errors. 

 

3.4 EM Algorithm 

 

The EM algorithm (Dempster et al. 1977) is an alternative estimation method for 

recovering parameter estimates from likelihood-based models where maximum likelihood 

estimation is computationally difficult.  The EM algorithm has become a popular tool with 

estimation problems involving incomplete data (McLachlan and Krishnan 1997) as well as 

mixture estimation (Bhat 1997; Train 2008).  The method also facilitates the consistent 

sampling of alternatives as shown by von Haefen and Jacobsen (unpublished). 

Assuming that an unknown parameter (in this case the latent class membership) is 

represented as a value in some parameterized probability distribution, the EM algorithm is a 

recursive procedure which begins with the expectation or “E” step: specifying the expected 

value of unknown parameters (class membership) given some known parameters (our current 

guess of the model parameters).  The maximization or “M” step follows: the known 

parameters are then updated given the expected values of the unknown parameters. The steps 

are then repeated until convergence, defined as a pre-determined small change in the 

parameter estimates between iterations (Train 2008).  This methodology represents an 

improvement over gradient-based methods by its ability to transform the computationally 

difficult maximization of a log of sums into a simpler recursive maximization of the sum of 

logs.   

Given our log-likelihood function: 

( ) ⎟
⎠

⎞
⎜
⎝

⎛
= ∑

c

t
cncncn LSLL )(ln βδ  
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and some fixed set of starting values for the parameters ( , )t t t
cφ β δ= , the EM algorithm lets 

us iteratively calculate a new value for the parameters: 

( )( )1

1 1
arg max ( ) ln ( )

N C
t t

nc nc n c
n c

h S Lφφ φ δ β+

= =

= ∑∑  

where t represents the iteration number and N is the number of observations.  Since the right 

hand portion of the equation can be rewritten as 

( )( ) ( )( ) ( )ln ( ) ln ln ( )nc n c nc n cS L S Lδ β δ β= + , 

the maximization can be performed independently for each set of parameters.  Beginning 

with the “E” step at iteration t, using various starting values, the probability (weight) of 

individual n belonging to class c conditional on the parameters t
cβ  and tδ  is: 

( )
( )

1

( )
( )

( )

t t
nc n ct

nc C
t t

nl n l
l

S L
h

S L

δ β
φ

δ β
=

=

∑
 

A maximization is then performed to update the individual class probability dependent on 

individual specific variables treating the weights from the previous step as given: 

( )1

1 1
arg max ( ) ln

N C
t t

nc nc
n c

h Sδδ φ δ+

= =

= ∑∑  

Another maximization is performed to update the conditional probability parameters, again 

treating the weights as fixed; independently for each class: 

1

1

argmax ( )ln ( )
N

t t
c nc n c

n

h Lββ φ β+

=

= ∑  

The weights are then recalculated using the new parameter values, and the entire process is 

repeated until convergence.3  Each successive maximization uses the prior parameters tφ and 

individual-specific class probabilities to form the weights used in the maximization the new 

parameter values.  The previously computationally burdensome estimation has now been 

                                                      

3 Note that when sampling, the full choice set is still used when updating the weights while the fixed sampled 
choice sets are used when maximizing the conditional likelihood function. 
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transformed into a recursive conditional logit estimation for each class and choice 

probability.  By breaking the mixed logit non-IIA model into a series of conditional logit IIA 

models, sampling of alternatives can be reintroduced at each recursive step.  The 

maximization procedure calculates a conditional logit (IIA) likelihood function for each class 

independently, keeping the individual weights fixed from the previous step.   

It should be noted that when using this method, as with any mixture model, 

convergence may be at a local instead of a global maximum because the unconditional 

likelihood is not globally concave.  To address this, it is often necessary to use multiple 

starting values.  

 

3.5 Model Selection 

 

A practical issue with latent class models is the selection of the number of classes.  

Traditional specification tests (likelihood ratio, Lagrange multiplier, and Wald tests) are 

inappropriate in this context because increasing the number of classes also increases the 

number of variables to be estimated.  These tests ignore the potential of overfitting the 

model.   Throughout the latent class literature a variety of information criteria statistics have 

been used.  In general form (Hurvich and Tsai 1989), the information criteria statistic is 

specified as IC = -2*LL + A*γ where LL is the log likelihood of the model at convergence, A 

is the number of estimated parameters in the model, and γ is a penalty constant.  There are a 

number of different information criteria statistics that differ in terms of the penalty associated 

with adding parameters, represented by the penalty constant γ.  

[Table 1 – Information Criteria Statistics] 

In each case, the optimal model is that which gives the minimum value of the 

respective information criteria.  Roeder et al. (1999) and Greene and Hensher (2003) suggest 

using the Bayesian Information Criteria (BIC). One advantage of the BIC over traditional 

hypothesis testing is that it performs better under weaker regularity conditions than the 

likelihood ratio test (Roeder et al. 1999).  Alternatively, many past papers (Meijer and 

Rouwendal 2006; Desarbo et al. 1992; Morey et al. 2006) have used the Akaike Information 
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Criteria (AIC) (Akaike 1974).   Other papers have compared the various information criteria 

(Thacher et al. 2005; Scarpa and Thiene 2005), but there is no general consensus in the 

literature for using one test over the others.   

As observed previously in Hynes et al. (2008), it is possible in practice for the analyst 

to select overfitted models when using only the AIC or BIC.  For example, specified models 

with many parameters can generate parameter estimates and standard errors that are 

implausibly large.  In our subsequent empirical exercise, parameter estimates for specific 

classes diverged from estimates for other classes by three orders of magnitude in some cases, 

while at the same time being coupled with a very small latent class probability.  Results like 

these suggest overfitting and the need for a more parsimonious specification.  Since the 

CAIC or crAIC penalize the addition of parameters more severely, they may be more useful 

to applied researchers if evidence of overfitting arises. 

 

3.6 Standard Errors 

 

 Calculation of the standard errors of parameter estimates from the EM algorithm can 

be cumbersome since there is no direct method for evaluating the information matrix (Train 

2008).  There is a large statistical literature addressing various methods of calculating 

standard errors based upon the observed information matrix, the expected information 

matrix, or on resampling methods (Baker 1992, Jamshidian and Jennrich 2002, Meng and 

Rubin 1991).  Train (2008) provides additional discussion on the different strategies 

available for calculating standard errors. 

 An aspect of the EM algorithm that can be exploited is the fact that the score of the 

log-likelihood is solved at each maximization step.  Ruud (1991) uses this observed log-

likelihood at the final step of the iteration to compute estimates of the standard errors.  

Derived by Louis (1982), the information matrix can be approximated with the outer-

product-of-the-gradient formula: 

( ) ( )∑
=

− ′=
N

n

ggNI
1

1 ˆˆˆ ϕϕ  
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where g is the score vector generated from the final step of the EM algorithm.  This 

estimation of the information matrix is a common method for recovering standard errors and 

is the simplest method for doing so with the EM algorithm.4   

 

4. Empirical Investigation 

 

This section describes the empirical example including information about the data set 

along with a comparison of results from the conditional logit and latent class models. 

 

4.1 Data 

 

An empirical illustration is performed with data from the Wisconsin Fishing and 

Outdoor Recreation Survey.  Conducted in 1998 by Triangle Economic Research, this dataset 

has been investigated previously by Murdock (2006) and Timmins and Murdock (2007).  A 

random digit dial of Wisconsin households produced a sample of 1,275 individuals who 

participated in a telephone and diary survey of their recreation habits over the summer 

months of 1998.  513 individuals reported taking a single day trip to one or more of 569 sites 

in Wisconsin (identified by freshwater lake or, for large lakes, quadrant of the lake).  Of the 

513 individuals, the average number of trips was 6.99 with a maximum of 50.  Each of the 

569 lake sites had an average of 6.29 visits, with a maximum of 108.  In many ways this is an 

ideal dataset to evaluate the consistency of sampling of alternatives; it is large enough that a 

researcher might prefer to work with a smaller choice set to avoid computational difficulties, 

but small enough that estimation of the full choice set is still feasible for comparison.  Table 

2 presents summary statistics. 

[Table 2 – Summary Statistics] 

                                                      

4  A limitation with this approach to estimating standard errors is that because it does not estimate the empirical 
Hessian directly and thus cannot be used to construct robust standard errors. 
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The full choice set is estimated with both a conditional logit model and several latent 

class specifications.  The parameter results are evaluated and information criteria are used to 

compare improvements in fit across specifications.  The same estimation is then also 

performed on randomly sampled choice sets equal to 50%, 25%, 12.5%, 5%, 2%, and 1%5 of 

the non-selected alternatives.  The sampling properties of the conditional logit model will be 

used to benchmark the latent class results.  Since we use the outer product of the gradient to 

recover standard errors in the latent class model, we will use the same method with the 

conditional logit model. 

 

4.2 Conditional Logit Results 

 

Estimation code was written and executed in Matlab and Gauss.  In contrast to the 

latent class model, the likelihood function for the conditional logit model is globally concave 

so starting values will effect run times but not convergence.  A complicating factor with our 

dataset is that individuals make multiple trips to multiple destinations. For consistency of the 

parameter estimates, it is necessary to generate a random sample of alternatives for each 

individual-site visited pair.  For a sample size of M, M-1 alternatives were randomly selected 

and included with the chosen alternative.  Two hundred random samples were generated for 

each sample size.  

[Figure 1 – Estimation Time: Conditional Logit Model] 

The primary benefit from sampling of alternatives is to reduce the computational 

burden of estimation.  An analysis of sampling’s effect on estimation run times suggests an 

almost linear relationship with diminishing returns at very small samples.  Figure 1 shows the 

average estimation time of the sampled model relative to the estimation time of the full 

model.   Cutting the sample by an additional 50% in any model roughly equates to a 56% 

reduction in estimation time, however the marginal time saved decreases with sample size. 

[Table 3 –Parameter Estimates: Conditional Logit Model] 

                                                      

5 285, 142, 71, 28, 11, and 6 alternatives respectively 
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The parameter estimates and standard errors for each of the sample sizes are shown in 

Table 3.  The means of the estimates and means of the standard errors from the 200 random 

samples are reported.  Two log-likelihood values are reported in this table: the “sampled log-

likelihood” (SLL) and the “normalized log-likelihood” (NLL).  In any sampled model, a 

smaller set of alternatives will generally result in a larger log-likelihood.  This number, 

however, is not useful in comparing goodness-of-fit across different sample sizes.  The NLL 

is reported for this reason.  After convergence is reached in a sampled model, the parameter 

estimates are used with the full choice set to compute the log-likelihood.  A comparison of 

the NLL across samples shows that, when sampling, the reduction in information available in 

each successive sample reduces goodness of fit, as expected.  A decrease in the sample size 

also increases the standard errors of the NLL reflecting the smaller amount of information 

used in estimation. 

 The parameters themselves are sensible (in terms of sign and magnitude) in the full 

model and relatively robust across sample sizes.  Travel cost and small lake are negative and 

significant, while all fish catch rates and the presence of boat ramps are positive and 

significant, as expected.  The standard errors for the parameters generally increase as the 

sample size drops, reflecting an efficiency loss when less data is used.  In the smallest 

samples, this decrease in fit is enough to make parameters that are significant with the full 

choice set insignificant.   

Table 3 suggests that parameter estimates are somewhat sensitive to sample size, but 

the welfare implications of these differences is unclear.  To investigate this issue, welfare 

estimates for five different policy scenarios are constructed from the parameter estimates 

summarized in Table 3.  The following policy scenarios are considered (see Table 4): 1) 

infrastructure construction,6 2) an increase in entry fees,7 3) an urban watershed management 

                                                      

6 Supposing that a boat ramp was constructed at each Wisconsin lake that did not have one (27% of sites). 
7 $5 increase in entry fees at all state-managed sites (defined by being in a state forest or wildlife refuge); 
approximately 23% of sites. 
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program, 4) an agricultural runoff management program,8 and 5) a fish stocking program.9  

Note that general equilibrium congestion effects are not considered here (Timmins and 

Murdock 2007), but these scenarios can be augmented or modified to fit any number of 

policy proposals. 

[Table 4 – Welfare Scenarios] 

The methodology used to calculate WTP is the log-sum formula derived by 

Hanemann (1978) and Small and Rosen (1981).  Given our constant marginal utility of 

income ( ) ( )jpjp pypyf −=− ** ββ  and a price and attribute change from (p0, q0) to (p1, q1), 

the compensating surplus is  
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The full choice set is used for computation of WTP estimates. 

[Figure 2 – Welfare Results: Conditional Logit Model] 

Figure 2 summarizes the performance of the welfare estimates across different sample 

sizes using box-and-whisker plots.  To construct these plots, mean WTP, 95%, and 75% 

confidence intervals (CIs)s for each unique sample were first calculated.  Note that all CIs 

were constructed using the parametric bootstrapping approach suggested by Krinsky and 

Robb (1986).  The plots contain the mean estimates of these summary statistics across the 

200 random samples that were run.  As the plots suggest, there is a loss of precision and 

efficiency with smaller sample sizes.  Depending on the welfare scenario, there are modest 

                                                      

8 Supposing that a storm water or non-point source pollution management policy could improve the quality of 
water and increase the catch rate by a uniform 5% across all fish species at affected sites. 
9 Fish stocking program where the catch rate of trout is increased by 25% across all sites that currently contain 
trout. 



 

 

 
 

21 
 

upward or downward deviations relative to the full sample specification, however there is no 

consistent trend across scenarios. 

For concreteness, consider the welfare effects of building a boat ramp at every site 

that does not have one (scenario one).  The results from the full choice set model indicate that 

the average recreational fisherman in the dataset would be willing to pay an additional $0.70 

per trip to fund the construction of a boat ramp at the 156 sites without one, with the 95% CI 

between $0.63 and $0.76 per trip.  A researcher could have similarly run one eighth of the 

sample size and would expect to find a mean WTP of $0.65 per trip with the 95% CI between 

$0.56 and $0.73 per trip. 

  [Table 5 – Increase in Range of 95% CI of WTP Estimates Compared to Full Choice 

Set: Conditional Logit Model] 

The loss in precision from sampling identified in Figure 2 comes with a significant 

benefit – a reduction in run time.  To quantify the tradeoff between precision and run time, 

Table 5 reports the change in the range of the 95% CI across sample sizes in comparison to 

that of the model utilizing the full choice set.  The 75% CI range is not reported, but did 

exhibit similar behavior.  The variation in CI ranges across the five policy scenarios is 

relatively small, so Table 5 only reports mean CI ranges. The results strongly suggest that for 

samples as small as 12.5%, the time savings are substantial while the precision losses are 

modest.  For example, the 50% sample size estimates were generated with a 56% time 

savings and resulted in 6% larger CIs.  Similarly, the 12.5% sample generated results with a 

90% time savings while CIs were 33% larger.  By contrast for sample sizes below 12.5%, the 

marginal reductions in run times are small while the loss in precision is substantial.  For 

example, moving from a 12.5% to a 5% sample of alternatives reduces run times by less than 

ten percent but more than doubles the loss in precision. More strikingly, moving from a 5% 

to a 1% sample of alternatives generates a one percent run time savings but increases CI 

ranges more than threefold.  

 

4.3 Latent Class Results 
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A similar evaluation of sampling was conducted with the latent class model . For 

these models, convergence was achieved at the iteration in the EM algorithm where the 

parameter values did not change. Since the likelihood function is not globally concave and 

there is the possibility of convergence on a local minimum, a total of ten starting values were 

used for each fixed sample, the largest SLL of which was determined to be the global 

maximum.10  The travel cost parameter was fixed across all classes but the remaining site 

characteristic parameters were random. 

[Figure 3 – Estimation Time: Latent Class Model] 

To provide a useful comparison to the conditional logit results presented earlier, an 

equivalent sample selection process was used.  Ten independent samples were taken for each 

successive sample size, using the same randomization procedure as in the conditional logit 

model.  The average computation time is shown in Figure 3 and the estimation time increases 

substantially with each additional class.  Sampling provides a decrease in relative runtime on 

a similar scale as in the conditional logit model, with diminishing time savings at much 

smaller sample size.   

Additionally, sampling did not seem to decrease runtimes uniformly as in the 

conditional logit models.  Convergence problems lead to increased estimation times when 

sampling in an overspecified model (specifically, the five and six class models).  In a 

correctly specified model (three classes), each successive sample reduces overall runtime.  

Model selection issues are described in the next section. 

For relatively small sample sizes with large numbers of classes, convergence was 

sometimes elusive.  This may be the result of a specific random sample chosen having an 

insufficient variation in the site characteristics data to facilitate convergence.  Additional runs 

were able to eventually produce random samples that were able to converge, however there 

are sample selection concerns with these results.  The properties of the random samples that 

                                                      

10 It may be advantageous in some situations to use more starting values to ensure convergence on a global 
minimum, but due to the computational burden in estimation and the large number of runs conducted, we 
limited ourselves to just ten starting values.  This may be defensible in our situation because we do have good 
starting values from our full choice set model where we considered 25 sets of starting values. 
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do not converge were not examined and the existence, source, and magnitude of any bias 

remain an avenue of further study. 

 [Table 6 – Information Criteria] 

Model selection is performed using the information criteria described earlier.  Using 

the NLL, the various decision rules produce different results.  The CAIC indicates that five 

or more classes were optimal with the full choice set.11  However, a careful inspection of the 

parameter estimates suggests possible over-fitting of the model.  With five classes, the EM 

algorithm is attempting to estimate 87 parameters from 513 sets of individual choices.  With 

a large number of classes, the parameters for one class for certain variables diverge 

dramatically.  For example, one class in the five class model has parameters of -35, -86, and 

29 for the forest, trout, and musky variables respectively.  By contrast, the mean parameter 

estimates across the other four classes are 0.71, 0.50, and 4.70, respectively.  This empirical 

finding may be the result of the 5-class model attempting to use a single class to account for a 

handful of anomalous outlying observations.  Thus, in our view, the more appropriate 

decision criterion is the crAIC which incorporates the greatest penalty for an increased 

number of parameters.12 

Recall that all the LL values are calculated with the parameter estimates from each 

sampled model using the full choice set.  This methodology simplifies comparison between 

models that use different numbers of classes as well as sample sizes.  We previously found 

that the three-class model is preferred to the conditional logit model when using the full 

choice set.  We also know that reducing the sample size while keeping the number of classes 

fixed reduces computation time dramatically. 

[Figure 4 – Distribution of Parameter Estimates] 

The latent class model delivers three sets of parameter estimates for each of the 

indirect utility parameters.  The distributions of select parameter estimates (boat ramp, urban, 

and trout catch rate) are shown in Figure 4.  As can be seen, the latent class model can 

                                                      

11 The AIC and BIC indicated the same number of optimal classes as the CAIC. 
12 Scarpa and Thiene (2005) found similar results and drew similar conclusions. 
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recover preference distributions that do not necessarily resemble commonly used continuous 

parametric distributions (e.g., normal, uniform). 

 [Figure 5 – Welfare Results: Latent Class Model] 

The stability of the WTP estimates across sampling in the mixed model is analyzed in 

Figure 4 using the results from the optimal model as determined by the crAIC.  Using the 

same policy scenarios as in the conditional logit model, WTP estimates (mean, 95%, and 

75% CIs) are constructed for each individual in each class.  They are then weighted by the 

individual latent class probabilities and summed together to produce a single value for each 

run.  In the sampled models, the welfare estimates reported are the weighted average of ten 

random samples.   

Interpreted, the results indicate that the average Wisconsin fisherman would be 

willing to pay $0.85 per trip for the proposed agricultural runoff management program (and 

postulated 5% increase in catch rates), with the 95% CI between $0.73 and $0.99.13  The 

researcher could conversely have run a 5% random sample of alternatives and recovered a 

mean WTP of $0.86 per trip, with the 95% CI being between $0.70 and $1.04.  In 

comparison with the conditional logit model, the latent class WTP estimates are larger in 

magnitude for scenarios two, four, and five, while smaller for scenarios one and three. 

 [Table 7 – Increase in Range of 95% CI of WTP Estimates Compared to Full Choice 

Set: Latent Class Model] 

Table 7 shows the change in the range of the mean 95% CIs across sample sizes in 

comparison to that of the model utilizing the full choice set.  The results show that sampling 

can produce reasonably reliable WTP estimates down to the 5% level.14  Relative to using the 

full choice set, the 50% choice set model’s 95% CI is, on average for all considered policy 

scenarios, 10% wider, and this value becomes 28%, 51%, and 76% for the 25%, 12.5%, and 

5% samples respectively.15  At the 2% and 1% levels, the CIs for some of the samples are 

extremely large.  In this model, WTP estimates at sample sizes below 5% could be 
                                                      

13 The CI represents the interval that is likely to include the parameter estimate. 
14 This value is 1% for the conditional logit model. 
15 These values are 6%, 16%, 33%, and 76%  respectively for the conditional logit model. 
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considered unreliable.   Once again, dependent on the needs of the researcher, an 

improvement in computation time is traded off with a lack in precision.  Ultimately of 

course, a researcher’s total run time is conditional on starting values, convergence criteria, 

and the number of random samples estimated. 

 

5. Conclusion 

 

This paper has investigated the welfare implications of sampling of alternatives in a 

mixed logit framework.  By employing the EM algorithm, estimation of latent class mixed 

logit models can be broken down into a recursive conditional logit estimation for each class.  

Within each class, IIA holds and thus allows for sampling of alternatives. 

We have empirically investigated the performance of the conditional logit and latent 

class models under various sample sizes in a recreational demand application.  Our results 

suggest that there is modest efficiency loss and significant time savings for the conditional 

logit models estimated with samples of alternatives as low as 12.5% of the full choice set.  

Smaller sample of alternative sizes generate small reductions in run times at the cost of 

substantial increases in the range of confidence intervals.  Depending on the needs of the 

researcher however, results may be useful down to the 1% sample size.   

For the latent class models, the results reported in this paper suggest that sampling of 

alternatives significantly reduces run times and performs very well for samples of 

alternatives as low as 25%.   Although sample sizes may be useful down to the 5% level, they 

come with relatively small time savings and substantial losses in precision.  Estimates from 

sample sizes below 5% were found to be unreliable in our application. 

Although a broad selection of samples sizes were tested, it is unclear whether the 

percent sample or absolute sample size play the predominant role in the efficiency loss and 

time savings of sampling.  Other research (von Haefen and Jacobson, unpublished) indicates 

through a Monte Carlo exercise that absolute sample size may be more important. Additional 

tests performed with an alternative dataset may be necessary to recover this result.   
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Certain lessons for the practitioner should be noted.  As with any mixture model, the 

latent class model may be sensitive to starting values.  We considered 10 sets of starting 

values for each specification due to computational limitations, but a greater number of 

starting values would be preferred to ensure estimation of the global minima.  More starting 

values will increase total computation time so the researcher will have to exercise judgment 

in this regard.  Additionally, although the consistency and efficiency of estimates at small 

samples will depend on the data set, our results suggest that extremely small samples (below 

5%) should be avoided.  See other work by von Haefen and Jacobsen (unpublished) for a 

further discussion and Monte Carlo analysis. 

At the current state of research, this paper has demonstrated the practicality of 

sampling of alternatives in a discrete choice mixture model.  By running several 

specifications on a recreation dataset, the applicability of the method has been illustrated as 

well.  Future research could include a comparison against the nested logit model and 

continuous random parameter mixed logit model.  Additional research analyzing bias in 

sampling techniques would also be valuable. 
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Table 1 

Information Criteria Statistics 
Information Criteria Penalty Constant γ 

Akaike Information Criteria 2 

Bayesian Information Criteria ln(N) 

Consistent Akaike Information Criteria 1+ln(N) 

Corrected Akaike Information Criteria 2 + 2(A + 1)(A + 2)/(N – A − 2) 

* General formula: IC = -2*LL + A*γ, where LL: log likelihood, A: # of parameters, 
γ: penalty constant 
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Table 2 

Summary Statistics 
Variable Description Mean St. Dev. 

Individual Summary Statistics  
trips  day trips during 1998 season  6.994 (7.182) 
boat  dummy = 1 if household owns boat  0.514 -  
kids  dummy = 1 if children under 14 in household  0.414 -  
income  personal income  $28,991  (12,466)

Site Summary Statistics 
tcost round trip travel time x opp. cost of time +$0.15 x 

round trip miles 
$100.70 (58.28) 

ramp dummy = 1 if site has at least one paved boat launch 
ramp 

0.726 - 

refuge dummy = 1 if site is inside a wildlife area or refuge 0.056 - 
forest dummy = 1 if site is in a national, state, or county 

forest 
0.178 - 

urban dummy = 1 if urban area on shoreline 0.179 - 
restroom dummy = 1 if restroom available 0.580 - 
river dummy = 1 if river fishing location 0.313 - 
small lake dummy = 1 if inland lake surface area <50 acres 0.172 - 
trout catch rate for brook, brown, and rainbow trout 0.094 (0.170) 
smallmouth catch rate for smallmouth bass 0.200 (0.205) 
walleye catch rate for walleye 0.125 (0.145) 
northern catch rate for northern pike 0.085 (0.057) 
musky catch rate for muskellunge 0.010 (0.022) 
salmon catch rate for coho and chinook salmon 0.009 (0.048) 
panfish catch rate for yellow perch, bluegill, crappie, and 

sunfish 
1.579 (0.887) 
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Figure 1 
Estimation Time 

Conditional Logit Model 
 

 
* Estimation time represents the average time to convergence (in minutes) for 200 Monte 
Carlo runs on a 3 GHz 64 bit dual processor with 8 GB of RAM.   
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 Table 3 
Parameter Estimates: Conditional Logit Model 

Sample Size 50% 
[285] 

25% 
[142] 

12.5% 
[71] 

5% 
[28] 

2% 
[11] 

1% 
[6] 

50% 
[285] 

SLL -13257 -10901 -8640 -6568 -4172 -2314 -1414 
se  (42) (56) (65) (75) (73) (63) 

NLL -13257 -13264 -13274 -13294 -13344 -13432 -13542 
se  (4) (6) (11) (27) (53) (105) 

Variable        
tcost -10.07 -10.026 -9.907 -9.7 -9.303 -8.84 -8.6

 (0.412) (0.407) (0.4) (0.393) (0.39) (0.401) (0.434)
ramp 0.421 0.407 0.397 0.38 0.371 0.349 0.343

 (0.176) (0.177) (0.178) (0.179) (0.184) (0.195) (0.217)
refuge 0.165 0.169 0.177 0.19 0.202 0.229 0.24

 (0.194) (0.195) (0.196) (0.199) (0.211) (0.233) (0.27)
forest 0.152 0.142 0.131 0.124 0.128 0.174 0.229

 (0.171) (0.174) (0.177) (0.182) (0.185) (0.202) (0.227)
urban -0.068 -0.084 -0.092 -0.094 -0.08 -0.024 0.032

 (0.117) (0.118) (0.119) (0.122) (0.134) (0.157) (0.186)
restroom 0.149 0.149 0.144 0.143 0.147 0.174 0.211

 (0.13) (0.131) (0.131) (0.13) (0.134) (0.148) (0.168)
river -0.013 -0.015 -0.02 -0.032 -0.07 -0.18 -0.266

 (0.297) (0.299) (0.305) (0.319) (0.348) (0.399) (0.458)
small lake -0.789 -0.789 -0.776 -0.765 -0.724 -0.707 -0.702

 (0.161) (0.164) (0.168) (0.175) (0.185) (0.209) (0.236)
trout 1.651 1.674 1.728 1.781 1.975 2.49 2.972

 (0.566) (0.571) (0.584) (0.605) (0.668) (0.797) (0.933)
smallmouth 0.943 0.948 0.972 0.996 1.05 1.149 1.174

 (0.359) (0.362) (0.371) (0.376) (0.369) (0.385) (0.427)
walleye 2.69 2.652 2.605 2.54 2.457 2.433 2.364

 (0.379) (0.376) (0.374) (0.38) (0.405) (0.479) (0.561)
northern 2.659 2.536 2.328 2.013 1.505 0.908 0.658

 (0.935) (0.955) (0.998) (1.07) (1.215) (1.472) (1.746)
musky 5.361 6.136 6.809 7.417 8.375 9.158 9.769

 (1.346) (1.752) (2.069) (2.324) (2.585) (2.803) (3.376)
salmon 7.733 7.852 7.968 8.043 8.139 7.848 7.545

 (1.384) (1.405) (1.441) (1.503) (1.635) (1.88) (2.132)
panfish 0.763 0.769 0.78 0.789 0.804 0.814 0.814

  (0.189) (0.189) (0.191) (0.194) (0.201) (0.223) (0.253)
* Results for the sampled models represent the mean of 200 random samples; clustered non-robust standard 
errors in parentheses; bold indicates significance at the 5% level; “NLL” is the log-likelihood calculated at 
the parameter values for the entire choice set for comparison purposes. 
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Table 4 
Welfare Scenarios 

Scenario Impacted Characteristics Affected Sites 
Infrastructure Construction 
 
 

Build boat ramp at every site that 
does not have one 

27.4% 

Entry Fee Increase 
 
 

$5 entry fee at all park/forest/refuge 
sites 

23.4% 

Urban Watershed 
Management 
 

5% catch rate increase for all fish at 
all urban sites 

17.9% 

Agricultural Runoff 
Management 
 

 5% catch rate increase for all fish at 
all non-urban/forest/refuge sites 

30.1% 

Fish Stocking Program 
 

25% increase in Trout catch rate 
across all sites 

98.4% 
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Figure 2 
Welfare Results 

Conditional Logit Model 
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$5 entry fee at all park/forest/refuge sites
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Scenario 5: Fish Stocking Program
25% increase in Trout catch rate across all 

sites * Mean WTP of 200 unique samples, the mean of 
the mean, 95th, and 75th CIs of which are reported.  
 
* Method: Small and Rosen (1981); Hanemann 
(1978) using the parameter estimates from the 
sample size specified, constructed with the full 
choice set.  
 
* Outer-product-of-the-gradient method used for 
calculating SEs. 
 
* The dashed line represents the mean WTP 
estimate for the full sample model. 
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Table 5 
Increase in Range of 95% CI of WTP Estimates  

Conditional Logit Model 
 Sample Size 

 
50%
[285]

25%
[142]

12.5% 
[71] 

5% 
[28] 

2% 
[11] 

1% 
[6] 

Efficiency Loss 6% 16% 33% 76% 165% 272% 
Percent Error 1% 3% 6% 13% 28% 42% 
Time Savings 56% 80% 90% 98% 99% 99% 

* Compared to the full choice set.  Absolute sample size in brackets.  
Efficiency Loss is the percent increase in the range of the 95% CI.  Percent 
Error is the percentage deviation of the mean WTP. 
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Figure 3
Estimation Time 

Latent Class Model 
 

 
 

* Estimation Time represents the time to convergence (in minutes) for one random sample 
with one set of starting values on a 3 GHz 64 bit dual processor with 8 GB of RAM.   
  

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

00.20.40.60.81

1 Class

2 Classes

3 Classes

4 Classes

5 Classes

6 Classes

Sample Size

Relative
Estimation 
Time



 

 

 
 

41 
 

Table 6 
Information Criteria 

  Sample Size 

  
# of 
classes Full 50% 25% 12.5% 5% 

 
2% 1% 

NLL 1 -13257 -13264 -13274 -13294 -13344 -13432 -13542
 2 -12416 -12425 -12447 -12471 -12586 -12905 -13264
 3 -12025 -12042 -12066 -12084 -12220 -12526 -12872
 4 -11724 -11734 -11757 -11805 -12010 -12311 DNC 
 5 -11432 -11486 -11532 -11592 -11748 -12232 DNC 
          
CAIC 1 26623 26637 26657 26697 26797 26973 27193 
 2 25071 25089 25132 25180 25411 26049 26767 
 3 24420 24453 24500 24538 24809 25422 26113 
 4 23947 23967 24013 24110 24518 25122 DNC 
 5 23494 23601 23693 23813 24127 25093 DNC 
     
crAIC 1 26560 26574 26594 26634 26734 26910 27130 
 2 25063 25081 25124 25172 25403 26040 26759 
 3 24765 24798 24846 24883 25154 25767 26458 
 4 25141 25161 25207 25304 25712 26316 DNC 
 5 26260 26367 26459 26579 26892 27859 DNC 
     
* CAIC, and crAIC calculated using the LL calculated with the full choice set; Mean 
of 200 and ten random samples reported for the one and multiple class models 
respectively; Optimal # of classes outlined and in  bold  defined by the minimum of 
the information criteria;  DNC = model did not converge. 
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Figure 4 

Parameter Estimate Distributions 
 

 
 
 

* Select parameters.  Results from the three-class model with the full choice set; best of ten 
starting values.  Class share is the mean of individual class shares calculated using the 
individual specific parameters.  The dashed line represents the parameter mean. 
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Figure 5 
Welfare Results 

Latent Class Model (crAIC)     
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1.58 1.62 

-152 -336 

 

* Mean WTP of ten unique samples, the mean of 
the mean, 95th, and 75th CIs of which are 
reported.  
 
* Method: Small and Rosen (1981); Hanemann 
(1978) using the parameter estimates from the 
sample size specified, constructed with the full 
choice set.  
 
* The dashed line represents the mean WTP 
estimate for the full sample model. 
 

2.46 2.74 
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Table 7 
Increase in Range of 95% CI of WTP Estimates 

Latent Class Model 
 Sample Size 

 
50%
[285]

25%
[142]

12.5% 
[71] 

5% 
[28] 

2% 
[11] 

1% 
[6] 

Efficiency Loss 10% 28% 51% 76% 84632% 18360%
Percent Error 19% 15% 6% 6% 34% 60% 
Time Savings 33% 56% 75% 84% 81% 86% 

* Compared to the full choice set.  Absolute sample size in brackets.  
Efficiency Loss is the percent increase in the range of the 95% CI.  Percent 
Error is the percentage deviation of the mean WTP. 
       

 


