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Do Rats Show a Mozart Effect?

KENNETH M. STEELE
Appalachian State University

The “Mozart effect” is an increase in spatial reasoning scores after lis-
tening to a Mozart piano sonata. Both the production and interpretation
of the effect are controversial. Many studies have failed to replicate the
original effect. Other studies have explained a Mozart effect as being
caused by changes in arousal or differences in preferences of the listener.
F. H. Rauscher, K. D. Robinson, and J. J. Jens (1998) reported that rats
learned to complete a T-maze more quickly if they had been exposed in
utero and reared hearing a Mozart piano sonata. They concluded that
the result indicated a direct effect of the music on brain development and
contradicted competing accounts of arousal or preference. This article is
an analysis of the experiment by Rauscher et al. The in utero exposure
would have been ineffective because rats are born deaf. A comparison of
human and rat audiograms, in the context of the frequencies produced
by a piano, suggests that adult rats are deaf to most notes in the sonata.
The successful performance of the Mozart group may be explained by
the incomplete use of random assignment of subjects to groups and by
experimenter effects in the construction of groups. The results of Rauscher
etal. (1998) do not provide strong support for the existence of the Mozart
effect.
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he original “Mozart effect” is an increase in spatial reasoning scores
after listening to the first section of a Mozart piano sonata, the Sonata
for Two Pianos in D Major, K. 448 (Rauscher, Shaw, & Ky, 1993, 1995).
Rauscher et al. (1993, 1995) interpreted their results and concluded that
hearing the music caused the improvement through direct neural priming
of spatial reasoning areas in the brain. This interpretation was used as the
basis for their strong advocacy of exposure to music in schools to improve
mathematics scores (Rauscher, 1997, 1999a; Shaw, 2000).
Shaw (2001) has enlarged the domain of the Mozart effect to include
reports that patients with Alzheimer’s disease/dementia show improved
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performance on a visual-spatial task after hearing the Mozart piano sonata
(Johnson, Cotman, Tasaki, & Shaw, 1998; Johnson, Shaw, Vuong, Vuong,
& Cotman, 2002) and that exposure to this piano sonata reduced seizure
activity in epileptic patients, even when the person was in a coma and there-
fore unconscious (Hughes, Daaboul, Fino, & Shaw, 1998). Shaw includes
in this “Mozart effect generalized” a study by Rauscher, Robinson, and
Jens (1998) which reports that long-term exposure of rats to this Mozart
piano sonata produced enhanced maze-learning. An analysis of the Rauscher
et al. (1998) experiment is the subject of this article.

The existence of the original Mozart effect is a matter of great contro-
versy. More laboratories have been unable to produce a Mozart effect
(Bridgett & Cuevas, 2000; Carstens, Huskins, & Hounshell, 1995; Kenealy
& Monsef, 1994; McCutcheon, 2000; McKelvie & Low, 2002; Newman,
Rosenbach, Burns, Latimer, Matocha, & Vogt, 1995; Ong, Lu, & Smith,
2000; Steele, Bass, & Crook, 1999; Steele, Dalla Bella, et al., 1999;
Stephenson, 2002; Stough, Kerkin, Bates, & Mangan, 1994; Weeks, 1996)
than have been able to produce the effect (Nantais & Schellenberg, 1999;
Rideout & Laubach, 1996). Even positive results have been interpreted as
being explained by arousal or preference differences instead of musical prim-
ing of spatial reasoning areas of the brain (Chabris, 1999; Husain, Thomp-
son, & Schellenberg, 2002; Nantais & Schellenberg, 1999; Steele, 2000;
Steele, Ball, & Runk, 1997; Thompson, Schellenberg, & Husain, 2001).

Chabris (1999) conducted a meta-analysis of published studies and con-
cluded that music enhanced spatial reasoning a trivial amount (d = 0.14
standard deviation [SD] units, the equivalent of 2.1 IQ points) when the
control condition was silence. The effect size was increased (d = 0.56 SD
units) when the control condition was auditory relaxation instructions.
Because relaxation instructions are designed to reduce arousal, Chabris
concluded that arousal differences explain cases in which a Mozart effect is
found. Hetland (2000) published a meta-analysis that came to a different
conclusion. Hetland concluded that the effect size was much larger (d =
0.50 SD units) for spatial task performance. What accounts for the dis-
crepancy between the two reports? One important difference was that
Hetland chose to include unpublished results. This choice produced the
inclusion of several studies from a specific laboratory (Rauscher, Bowers,
& Kohlbeck, 1999; Rauscher & Hayes, 1999; Rauscher & Ribar, 1999).
However, Hetland’s meta-analysis found a “lab effect” also. Results from
Rauscher’s lab showed significantly stronger Mozart-effect results relative
to all other labs (Hetland, 2000, p. 134). Mean effect size from Rauscher’s
lab was more than twice as large as results from other labs. Hetland sug-
gested that this difference may be due to unidentified procedural differ-
ences. This produces a problem for evaluation of Hetland’s overall conclu-
sion about the Mozart effect because it is difficult to evaluate procedural
differences when the studies of interest are unpublished.
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Rauscher and Shaw (1998) suggested that failures were due to inappro-
priate procedures or inappropriate spatial reasoning measures. However
Steele, Bass, and Crook (1999) replicated the procedure of Rauscher et al.
(1995) and were unable to produce a Mozart effect. Steele, Dalla Bella,
Peretz, et al. (1999) were unable to produce a Mozart effect in three experi-
ments that used the general procedures of both experiments by Rauscher et
al. Rauscher (1999b) suggested these negative results were caused by pro-
cedural artifacts. Rauscher’s main criticism was Steele et al.’s use of ran-
dom assignment of subjects to experimental conditions. Rauscher et al.
(1995) used results from a pretest to construct “equivalent groups” before
the experimental session.

Rauscher (1999b) and Shaw (2000) have cited the experiment by
Rauscher et al. (1998) as additional proof of the existence of the effect.
Rauscher et al. (1998) reported the production of a Mozart effect in rats.
The result was interpreted to indicate that the Mozart effect is a neuro-
physiological effect, not a cultural or arousal-preference effect, which “pro-
vides a window into higher brain function” (Shaw, 2000). This article analy-
ses that experiment to determine whether a Mozart effect was produced in
rats.

The Rauscher et al. (1998) Experiment

Rauscher et al. (1998) bred rats in the presence of a repeating 8 min 24
s tape loop of either the first portion of the Mozart piano sonata (K. 448),
an equivalent duration from Philip Glass’s Music With Changing Parts, or
white noise. The pregnant rats received continued exposure to their origi-
nal sound condition (Mozart, Glass, or White Noise) for 12 h per day at an
intensity of 65 to 70 dB throughout the gestation period. After birth, rat
pups were exposed additionally to that sound condition for another 60
days, 12 h per day. After weaning, all animals were handled for 1 min daily
to accustom them to human contact. Beginning on the 61st day, 90 rats (30
per sound-rearing condition, equal numbers of males and females) were
trained on a six-unit T-maze. Each sound-condition group was further sub-
divided into three groups of 10, and each subgroup was trained in the maze
in the presence of either the Mozart sonata, the Glass music, or white noise.
Sound levels in the maze registered 65 to 70 dB. Testing was performed
“blind” over the course of § days, three trials per day, with 10-min rest
periods between trials. (The “blinding” procedure was not described.) Tri-
als were videotaped. Dependent measures were working time in the maze
and errors (blind-alley entrances).

Rauscher et al. (1998) reported that the Mozart-reared group performed
significantly better at learning the maze. The Mozart group produced sig-
nificantly fewer blind-alley entrances than the white-noise group on the
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first day of training. The Mozart-reared rats learned over days to reach the
reward more quickly than the Glass or White Noise groups. There was no
effect of the specific music played during training inside the maze, and
there was no significant interaction between music-rearing condition and
music-in-the-maze condition. A Mozart-reared rat reared was not ham-
pered by having Glass played in the maze, and a Glass-reared rat was not
helped by having Mozart played in the maze.

Rauscher et al. (1998) conducted a second experiment to test whether
the rearing-condition difference could be due to a decrease in performance
in the Glass and White Noise groups. Two groups (N = 12 and N = 8) were
exposed to silence in utero and 60 days postpartum and then tested in the
maze during exposure to either silence or white noise. A third group (N =
8) was exposed to white noise originally and then tested in silence. Rauscher
et al. found no significant effect of rearing condition or significant interac-
tion between rearing condition and sound condition in the maze. Learning
performance was unaffected by switches to a new sound stimulus in the
maze.

Rauscher (1999b) and Shaw (2000, 2001) did not explain why rats would
be expected to show a Mozart effect and cited no work demonstrating that
listening to classical music would improve learning in rats. A review of the
literature indicated that only two studies had examined the specific effect
of classical music on rats before Rauscher et al. (1998). The results of both
studies raised questions about what rats heard of the music.

What Is the Effect of Classical Music on Rats?

Cross, Halcomb, and Matter (1967) investigated imprinting to sound by
having groups of rats reared listening to music either by Mozart or by
Schoenberg and asked whether rearing condition would predict sound pref-
erence in a choice task. The Mozart group did show a preference for Mozart
over Schoenberg but the Schoenberg group did not prefer Schoenberg. Cross
et al. explained the lack of preference of the Schoenberg group as possibly
due to differences in vividness, intensity, or attention-getting characteris-
tics between the two sets of music. In other words, Cross et al. expressed
concern that the Schoenberg rats had not heard their music well enough to
produce an imprinting effect.

Bates and Horvath (1971) investigated whether exposure to classical
music would improve discrimination learning in rats. Rats were trained to
solve a visual discrimination task in the presence of either a Mozart sym-
phony, a monotonic amelodic version of that Mozart symphony (which
preserved only the rhythm component), a Schoenberg chamber symphony,
a monotonic amelodic version of the Schoenberg selection, white noise, or
quiet. Bates and Horvath found that rats trained in the presence of Mozart
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produced more correct responses than rats exposed to Schoenberg but there
were no differences in learning rate between rats that heard the original
music and rats that heard the altered music, for both the Mozart and
Schoenberg group. In other words, greatly altering the music did not affect
the rats’ rate of learning. Finally, the best discrimination performance was
produced by the rats in the quiet condition. The lack of effect of altering
the music suggests that rats may not hear all aspects of the music.

What Is the Effect on a Rat of in Utero Exposure to Music?

Rauscher et al. (1998) argued for the need to establish an animal model
to investigate the physiology of the Mozart effect but did not explain why
rats were chosen as the appropriate model. The use of animal models has a
long and honorable history. However, one must always be concerned that
one has made the appropriate translation from one domain to another.
Rauscher et al. (1998) treated rats as if they were humans by exposing the
rats to the music in utero. The human infant hears at birth, and there is
evidence that the fetus responds to vibration by 26 weeks (Gagnon, Hunse,
Carmichael, Fellows, & Patrick, 1987). Some mammals hear at birth, in-
cluding goat and guinea-pig, but many mammals do not, including ferrets,
gerbils, and rats (Sohmer & Freeman, 1995). Rats are deaf to air-borne
sounds until about 11 days after birth. Geal-Dor, Freeman, Li, and Sohmer
(1993) exposed young rats from birth through 10 days old to 135 dB SPL
click stimuli without provoking a response in auditory brainstem neurons.
Deafness is due, in part, to lack of conduction of sound because the bones
of the middle ear have not ossified. In addition, the newborn rat shows
sensorineural deafness. The earliest auditory brainstem response to direct
80-dB vibration of the skull does not appear until a week after birth (Geal-
Dor et al., 1993) and a cochlear microphonic response does not appear for
another 2 days (Uziel, Romand, & Marot, 1981).

What Sound Frequencies Do Humans and Rats Hear?

The approach of Rauscher et al. was to expose rats to music, using the
same music selections at the same sound intensities as were used in their
human-subject experiments. This procedure was based on the assumption
that musical stimuli appropriate for human hearing would suffice for rats.
The available evidence from comparative psychophysics indicates that the
assumption was wrong.

Figure 1 shows a typical human audiogram (Jackson, Heffner, & Heffner,
1999). The figure shows how intense a sound must be to be above absolute
threshold for different frequencies. A value of 0 dB SPL is the conventional



256 Kenneth M. Steele

Absolute Threshold (dB)

\0 00 Q 00 QQ
N 'Y P »\000

Frequency (Hz)

Fig. 1. Human audiogram illustrating the relationship of absolute threshold to stimulus
frequency. Stimulus intensity was measured in decibels (dB SPL), and frequency was mea-
sured in Hertz. Note that frequency is reported on a log scale. Greater sensitivity is indi-
cated by lower threshold values. The results are from Jackson et al. (1999).

absolute threshold for human hearing. Each increment of 20 dB indicates
that the physical intensity of the stimulus has been increased by a factor of
10 (Matlin & Foley, 1997, p. 281). The change from 0 to 100 dB repre-
sents a change by a factor of 100,000 in the intensity of the stimulus. Al-
though it is true that the typical human hearing range is from 20 Hz to
20,000 Hz, it is clear that we are not sensitive equally to sounds across that
range. The figure illustrates that human hearing may be broken roughly
into three bands: below 100 Hz, 100 to 8000 Hz, and above 8000 Hz.
Human hearing is sensitized to detect and discriminate among sounds in
the middle band, the location of speech frequencies. The lower and higher
frequency bands are used primarily for sound localization (Coren, Ward,
& Enns, 1999; Stevens & Newman, 1934, 1936).

Table 1 shows the fundamental frequencies associated with each note on
the piano keyboard (Reblitz, 1976). The table shows notes organized in
columns by octaves and in rows by note names. “C,” designates the “C”
note in the fourth octave and is referred to as “middle C.” The range of
frequencies across the entire keyboard is from 27.5 Hz to 4186 Hz, and the
range for the two middle octaves is from 220 Hz (A,) to 831 Hz (G¥,). Both
sets of ranges indicate that piano note frequencies are located where our
hearing is most sensitive. This is not surprising because humans developed
the piano to affect human ears.

Figure 2 shows the addition of a typical audiogram for Rattus into Fig-
ure 1 (Heffner, Heffner, Contos, & Ott, 1994; also see additional audio-
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TasLE 1
Theoretical Fundamental Frequencies for the 88 Piano Notes

Octaves

Note 1 2 3 4 5 6 7 8

Gé 51913 103.826 207.652 415.305 830.609 1661.219 3322.437
G 48.999 97999 195998 391.995 783.991 1567.982 3135.437
Fb  46.249 92499 184.997 369.994 739.989 1479.978 2959.955
43.654 87.307 174.617 349.228 698.456 1396.913 2793.826
41.203 82.407 164.814 329.629 659.255 1318.520 2637.020
Dié 38.891 77.782 155.563 311.127 622.254 1244.598 2489.016
D 36.708 73.416 146.832 293.665 587.330 1174.659 2439.318
Cé 34648 69.296 138.591 277.183 554.365 1108.731 2217.461
32.703 65.406 130.813 261.626 523.251 1046.502 2093.004 4186.009
30.868 61.735 123.471 246.942 493.883 987.767 1975.533 3951.066
A 29.135 58270 116.541 233.082 466.164 932.328 1864.655 3729.310
27.500 55.000 110.000 220.000 440.000 880.000 1760.000 3520.000

grams in Fay, 1988). The figure indicates that the audiogram for the rat is
shifted toward much higher frequencies, with lowest thresholds at 8,000
Hz and 32,000 Hz. One reason for the shift in frequency sensitivity is sound
localization (Heffner & Heffner, 1998). The pinna (outer ear) and the head
alter the characteristics of the sound signal to produce sound-level differ-
ences between the ears and these intensity differences are then used in sound
localization. There is an inverse relationship between the size of the head

Source
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Fig. 2. Relationship between human audiogram and rat audiogram. Stimulus intensity was
measured in decibels (dB SPL), and frequency was measured in Hertz and is reported on a
log scale. Greater sensitivity is indicated by lower threshold values. The human results (un-
filled squares) are from Jackson et al. (1999) and the rat results (filled circles) are from
Heffner et al. (1994).
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cum pinna and the sound frequencies most affected. Smaller heads work
best with the attenuation of higher frequencies. A shift to higher-frequency
sensitivity permits rats to use differences between the ears to localize sounds
successfully.

What Notes Would Be Heard in the Mozart Piano Sonata?

Figure 3 shows the addition of dashed lines to indicate the location of 65
and 70 dB, the sound-intensity range used by Rauscher et al. (1998). Fre-
quency points above the lines indicate frequency values that would require
a higher intensity than was presented in the Rauscher et al. experiment to
be above absolute threshold. These frequencies would not be heard at the
sound intensity used in the Rauscher et al. experiment. The dashed-lines
intersect the rat audiogram at approximately 500 Hz, and suggest that
sounds below 500 Hz were below absolute threshold for the rats in this
experiment. The values in Table 1 indicate that 500 Hz corresponds to a
point between B, and C; on the keyboard. The location of this value sug-
gests that piano notes from the lower four octaves would be below abso-
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Fig. 3. Sound intensity cutoff lines applied to audiograms. The dashed lines indicate the
range of amplitude of stimuli (from 65 to 70 dB) used by Rauscher et al. (1998). In order to
be above absolute threshold, frequency values located above the dashed line would require
higher amplitudes than were provided in the experiment by Rauscher et al.. The dashed
lines intersect the rat audiogram at approximately 500 Hz, suggesting that frequencies be-
low 500 Hz were inaudible.
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lute threshold for subjects in the Rauscher et al. (1998) experiment. This is
a conservative estimate because the presence of other sounds, for example,
the sound of a ventilation fan, would produce masking noises that would
increase the absolute threshold of a note further.

Hypothesizing that only C, and notes of higher frequency were above
threshold would suggest that rats could hear only 37/88 (42%) of the avail-
able piano notes. Therefore it is important to know which notes occurred
in the Mozart piano sonata because rats would not have heard the lower-
frequency notes. A count of the amount of each note was obtained from a
standard musical score (Hughes, 1926) for the first movement of the K.
448 sonata. Figure 4 shows the percentage of notes in the score, collapsed
into octaves. The point for Octave 1 indicates the proportion of notes
from that octave, and was computed from the sum of all occurrences of
notes from A, to G# divided by the total number of notes. Other octave
percentages were calculated in a similar fashion. A line was established at
C,, as notes above C, were hypothesized to be above threshold and notes
below C; were below threshold. Based on this assumption, the rats in
Rauscher et al. (1998) would not have heard 1913 (69%) of the 2790
notes in the first movement.

40 69% 31%

Percentage of Total Notes

1 2 3 4 5 6 7
Piano Octave

Fig. 4. Distribution of notes in the first section of Mozart’s piano sonata K. 448. Each point
shows the sum of notes in an octave divided by the total number of notes in the first section
of K. 448. The note C_ (C in the fifth octave) has a frequency of 523 Hz and marks the likely
border between inaudible notes (69%) and audible notes (31%).
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Discussion

Did the Rauscher et al. rats show a Mozart effect? The evidence is against
this conclusion. Exposure to the music in utero would have been ineffec-
tive because rats are deaf as newborns. What did adolescent rats hear when
the Mozart piano sonata was played? A comparison of human and rat
audiograms indicated clear differences between the two species. The range
of hearing for rats is shifted to higher frequencies, relative to humans. In
contrast, the frequency values of piano notes are located where human
hearing is sensitive. The present analysis suggests that rats were deaf to
much of the hypothesized enrichment effects of the music because more
than half of the notes in the sonata were below absolute threshold for the
rats in Rauscher et al. (1998). This is a conservative estimate because the
effects of additional noises, such as the masking effects of a ventilation fan,
were not included in the estimate.

The conclusion that the rats in Rauscher et al. (1998) were deaf to much
of the music permits one to explain one puzzling result from the study.
Rauscher et al. found that there was no effect of the music that was played
in the maze. This was an odd finding because standard animal learning
work would have suggested that subjects should have been disrupted by a
change in their usual sound environment (i.e., generalization decrement).
The lack of disruption would be consistent with the suggestion that rats
heard little of the music, and therefore were not affected by the change in
music in the maze.

What explains the positive findings by Rauscher et al. (1998)? The groups
may have been systematically different for reasons other than music expo-
sure. Remember that the Mozart-reared rats showed significantly less er-
rors on the first day of training. This difference suggests that the Mozart-
reared group was behaving differently from other groups at the start of
maze training. An analysis of the Rauscher et al. procedure suggests two
factors that could have produced groups with pre-existing differences. First,
their design violated the principle of random assignment of rat pups to
music-rearing condition. All offspring from a particular mother were as-
signed to the same music condition. If a rat was impregnated in the pres-
ence of the Mozart sonata, then all her offspring would be assigned to the
Mozart condition. This procedure introduces the problem of a “litter ef-
fect,” that is, the offspring of a mother tend to be more similar to one
another than to rats in other litters because of characteristics they inherit
from the mother and their similar prenatal and postnatal environments
(Caldji, Diorio, & Meaney, 2000; Catalani et al., 2002; Pryce & Feldon,
2003). Assignment of all offspring to the same condition confounds litter
differences with listening-group differences. The immediate difference in
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error rates between the Mozart-reared group and the white-noise group
may reflect litter differences between the groups that affected learning rate.

One means by which a litter effect would be translated into a maze-
learning effect would be through differences in emotionality between lit-
ters. Early stress results in changes in emotionality of offspring and affects
learning rates in adult rats. Mild prenatal stress of the mother will result in
offspring with reduced fear reactions and increased learning rates (Fujioka
et al., 2001). Increased levels of prenatal stress may produce a reversed
pattern (Lehman, Stohr, & Feldon, 2000). The impact of a stress manipu-
lation would depend upon the emotional reactivity of the individual. Im-
portantly, individual differences in emotional reactivity among rat mothers
are transmitted to their offspring (Caldji et al., 2000). The most common
postnatal stress manipulations involve handling of the rat pups by experi-
menters and periods of separation of pups and mothers (Pryce & Feldon,
2003). At least the first condition was present in the Rauscher et al. experi-
ment. (A typical control condition, and the typical method to reduce a
litter-effect problem, is to cross-foster, i.e., spread the members of any one
litter evenly among all mothers. Rauscher et al., 1998, did not do this be-
cause they thought they were studying the effect of music on the develop-
ing fetal brain.)

A second problem comes from the experimenter’s construction of the
final groups. Subjects were culled from groups after group assignment was
known. The final three groups contained the same number of subjects,
evenly divided between males and females. Creation of each group required
culling of some number of subjects by the experimenter. Experimenters
would not be blind to group assignment of the offspring during culling
because the mother’s listening condition was established already. Therefore
the experimenter may have introduced some selection artifact during the
culling operation that affected the final nature of the groups.

One selection artifact that would be of concern is inadvertent attention
to the distance between anus and genitalia, the anogenital distance (AGD).
From birth, rats are classified reliably as male or female based on observa-
tion of the AGD (Gallavan, Holson, Stump, Knapp, & Reynolds, 1999).
AGD is a marker that indicates hormone exposure also, with increased
AGD indicating increased androgen exposure. Even female fetuses will be
“masculinized” by developing in close uterine position to male fetuses, the
“intra-uterine position” effect, and this exposure would be reflected by an
increased AGD (Meisel & Ward, 1981; Richmond & Sachs, 1984; see
Drickamer, 1996, for a recent review). Exposure to prenatal androgens
increases learning rate in spatial mazes in both male and female rats (Isgor
& Sengelaub, 1998). Hence, inadvertent attention to an increased AGD
could lead to the selection of a group of males and females that would
show better spatial learning.
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A combination of both litter effects and selective culling could produce
groups that would be systematically different in a fashion that would affect
the rate of learning by the group in the maze. For example, any one indi-
vidual rat may be more fearful to being placed in the maze than another
rat. The litter-effect problem is that this first individual rat may be in a
music group that contains brothers and sisters who may have a similar
level of emotional reactivity, whereas the other rat is in a different music
group that is composed of brothers and sisters who share that other rat’s
level of emotional reactivity to the situation. The culling of the groups may
have led to the elimination of pups who appeared “different” from their
littermates, which would magnify these litter effects. Thus superficially trivial
and innocent steps could produce groups that would learn to run mazes at
different rates independent of the assigned listening condition.

The preceding paragraphs suggest plausible speculations of how system-
atic learning-rate differences among groups could have been produced in-
advertently by the Rauscher et al. procedure. The most plausible sequence
would depend on a careful analysis of concrete details of the procedure.
This may prove difficult to do because many important details may have
gone unrecorded, such as the number of brothers and sisters in a group, or
objectively undefined, such as the rule used to choose the animals to be
culled.

The historical record makes clear that seemingly trivial deviations from
true random assignment can have a major effect on results. Brady, Porter,
Conrad, and Mason (1958) reported that monkeys who were required to
lever press to avoid shock developed stomach ulcers more quickly than did
yoked control subjects that had no control over shock rate. Brady’s (1958)
vivid analogy that the responding monkeys were like busy “executives”
suffering from the stress of decision making was a captivating image. How-
ever, the general finding to come from this type of experimental situation
was the reverse result (Weiss, 1971). The subjects who had no control over
the amount of shock or were unable to predict its occurrence were the ones
who suffered the most ulcers. Weiss concluded that Brady’s atypical result
likely came from a failure to use random assignment of subjects to condi-
tion. Monkeys who learned the avoidance task most quickly in a pretest
were assigned to the executive role and subsequent work demonstrated
high-responding subjects were the ones most likely to develop ulcers.

Rauscher (1999b) and Shaw (2000) suggested that the demonstration of
the Mozart effect in rats rules out a procedural or cultural explanation of
their results with humans. The present analysis suggests there was no Mozart
effect in the Rauscher et al. (1998) study because the rats were deaf to the
majority of notes in the sonata played in their experiment. An alternative
explanation of their results is available because the design of the experi-
ment confounded familial differences with group assignment and subjects
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were culled after group assignment was known. Either design problem could
explain the different performances by the groups in a maze task. There is
still no scientific reason to base intellectual enhancement programs on the
existence of the Mozart effect.!
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